Abstract:
A hydride ion conductor represented by a general formula:
Ba2-x-mAxMg1-y-nByH6-x-y-2m-2n (1),
wherein A and B are each selected from at least one or more of the group consisting of Li, Na, K, Rb, and Cs, and 0≤x≤1, 0≤y≤1, 0≤m≤0.2, and 0≤n≤0.2, excluding a case where x=y=m=n=0.
Abstract:
A thin film of metal oxide includes zinc (Zn); tin (Sn); silicon (Si); and oxygen (O). In terms of oxide, based on 100 mol % of total of oxides of the thin film, SnO2 is greater than 15 mol % but less than or equal to 95 mol %.
Abstract:
Provided is a manufacturing method with which it is possible to convert a mayenite-type compound to an electride, wherein a reducing agent is not required, reaction conditions include a temperature that is lower than that in the related art, and the reaction is performed more quickly in a simple manner, and, additionally, by requiring a lower amount of energy. Provided is a method for manufacturing an electride of mayenite-type compounds, the method being characterized in that a mayenite-type compound is converted to an electride by making a current directly flow through the mayenite-type compound by applying a voltage to the mayenite-type compound in a heating state.
Abstract:
A thin film of metal oxide includes zinc (Zn); tin (Sn); silicon (Si); and oxygen (O). In terms of oxide, based on 100 mol % of total of oxides of the thin film, SnO2 is greater than 15 mol % but less than or equal to 95 mol %.
Abstract:
A C12A7 electride thin film fabrication method includes a step of forming an amorphous C12A7 electride thin film on a substrate by vapor deposition under an atmosphere with an oxygen partial pressure of less than 0.1 Pa using a target made of a crystalline C12A7 electride having an electron density within a range of 2.0×1018 cm−3 to 2.3×1021 cm−3.
Abstract:
A light emitting device including an organic electroluminescence element is provided. The light emitting device may be a display device or a lighting device. The organic electroluminescence element includes an anode, a light emitting layer, and a cathode that are arranged in this order. An electron injection layer is arranged between the light emitting layer and the cathode. The electron injection layer is made of an amorphous C12A7 electride.
Abstract:
An electride, which is more stable and can be more easily obtained, is provided or is made available, and as a result, a catalyst particularly useful for chemical synthesis, in which the electride is particularly used, is provided.A transition metal-supported intermetallic compound having a transition metal supported on an intermetallic compound represented by the following formula (1): A5X3 (1) wherein A represents a rare earth element, and X represents Si or Ge.
Abstract:
A light-emitting device includes a pair of first electrodes arranged separated from and opposing each other on a first surface of a substrate; a light-emitting layer arranged on at least one of the first electrodes; a second electrode arranged on the light-emitting layer; and a bridge layer connecting the first electrodes. The bridge layer is formed of a material having a resistance that falls within a range of 100 kΩ to 100 MΩ.
Abstract:
An assembly of nanoparticles includes metal oxide, the nanoparticles including zinc (Zn) and silicon (Si). In addition, the nanoparticles have an atomic ratio of Zn/(Zn+Si) in a range of 0.3 to 0.95. Further, the nanoparticles have an equivalent circular particle diameter in a range of 1 nm to 20 nm.
Abstract:
An oxide ion-conducting solid electrolyte containing a mayenite-type compound having a representative composition represented by Ca12Al14O33, and 9 mol % to 30 mol % of titanium (Ti) in terms of TiO2.