Abstract:
A neuro-probe device is provided. The neuro-probe device includes a carrier including bio-resorbable glass, and a neuro-probe mounted on the carrier.
Abstract:
According to one aspect of the invention, there is provided a muscle stimulation system for effecting appendage movement, the muscle stimulation system comprising: first transceiver circuitry; at least one first implantable stimulation device for implantation adjacent to one or more first muscles responsible for the appendage movement, the first implantable stimulation device configured to be wirelessly activated by the first transceiver circuitry; second transceiver circuitry; at least one second implantable stimulation device for implantation adjacent to one or more second muscles responsible for the appendage movement, the second implantable stimulation device configured to be wirelessly activated by the second transceiver circuitry; and a base station configured to wirelessly communicate with both the first transceiver circuitry and the second transceiver circuitry to receive and transmit signals that causes coordinated activation of the first implantable stimulation device and/or the second implantable stimulation device to coordinate stimulation of the first muscles and/or the second muscles that are responsible for the appendage movement.
Abstract:
In various embodiments of the present disclosure, there is provided an energy harvesting apparatus, including: an energy harvester for generating electric power from an ambient source; a power conditioning circuit coupled to the output of the energy harvester; including: a boost converter module; a buck-boost converter module; and a power modification control module; wherein the power modification control module is configured to initialize the energy harvesting apparatus from inactivity to a normal energy harvesting state by operating the boost converter module, and operating the buck-boost converter when an output voltage of the power conditioning circuit rises to a predetermined value. A corresponding method of operating an energy harvesting apparatus is provided.
Abstract:
According to various embodiments, there is provided a method for generating a reference clock signal, the method including discharging a capacitive element to a discharged state, when a reset signal has a predetermined reset state; charging the capacitive element from the discharged state to a first voltage, when a charge signal has a predetermined charge state; comparing the first voltage to a zero voltage, when a compare signal has a predetermined compare state; generating a second voltage based on the comparing of the first voltage to the zero voltage; generating a clock signal based on the second voltage, using an oscillator; and generating each of the reset signal, the charge signal and the compare signal, based on the clock signal.
Abstract:
The present invention provides a nerve stump interface for generating an electric field for promoting and guiding axonal regeneration and an electric field assisted axonal regeneration system. The nerve stump interface comprises a sieve having a plurality of holes. A strip is coupled to the sieve. A first electrode is provided at one of the plurality of holes and a second electrode is provided on the strip. The strip is arranged to space the second electrode from the first electrode. The first electrode and the second electrode are for generating the electric field. At least one securing element is provided on a side of the strip to allow that side of the strip to affix against an opposite side of the strip. The present invention also provides a method for assembling the electric field assisted axonal regeneration system.
Abstract:
In various embodiments of the present disclosure, there is provided a receiver for body channel communication. The receiver includes an electrode configured to receive an incoming signal transmitted as a multi-level transmission signal from a transmitter through a body channel, a differentiator configured to obtain a time derivative of the incoming signal indicating a plurality of data transitions, and an analog to digital converter configured to generate a multi-level output signal representing the multi-level transmission signal based on the plurality of data transitions. A corresponding method of controlling a receiver for body channel communications is provided.
Abstract:
A motor driver circuit for a Micro-electro-mechanical systems (MEMS) micro-mirror device, the motor driver circuit comprising: a non-inverting buffer circuit; an inverting buffer circuit; and a scalar circuit, the scalar circuit comprising a Supply Tracked Common Mode Voltage (VCMSC) generation circuit, wherein the non-inverting buffer circuit, the inverting buffer circuit, and the scalar circuit are configured, together with the VCMSC generation circuit, to provide a common mode voltage to a motor in response to a VCMSC voltage generated by the VCMSC generation circuit, and wherein the VCMSC voltage is generated by the VCMSC generation circuit in response to a control supply voltage and a driver supply voltage provided to the VCMSC generation circuit.
Abstract:
According to embodiments of the present invention, a receiver is provided. The receiver includes an envelope detector configured to generate a waveform corresponding to an envelope of a signal received by the receiver, a carrier recovery circuit configured to generate a carrier signal based on the waveform, wherein the carrier signal has a frequency corresponding to a center frequency of the received signal, and a template generator configured to generate a local template signal based on the waveform, the local template signal including a plurality of pulses. According to further embodiments of the present invention, a method of controlling a receiver is also provided.
Abstract:
According to various embodiments, there is provided a method for generating a reference clock signal, the method including discharging a capacitive element to a discharged state, when a reset signal has a predetermined reset state; charging the capacitive element from the discharged state to a first voltage, when a charge signal has a predetermined charge state; comparing the first voltage to a zero voltage, when a compare signal has a predetermined compare state; generating a second voltage based on the comparing of the first voltage to the zero voltage; generating a clock signal based on the second voltage, using an oscillator; and generating each of the reset signal, the charge signal and the compare signal, based on the clock signal.
Abstract:
A system and method for body channel communication is provided. The system includes a transceiver which encodes multiple bits per symbol when operating in a high data rate mode by selecting a first Walsh code in response to a first set of multiple bits of data and selecting a second Walsh code in response to a second set of multiple bits of data, both Walsh codes selected from a multiple-bit Walsh code sequence. The transceiver also generates a multi-level transmission signal having a predetermined symbol frequency by stacking the first Walsh code onto the second Walsh code, and transmits the multi-level signal having the first predetermined symbol frequency through the body channel. The transceiver also has additional modes of operation which include a normal mode and a low power mode, the low power mode decoding the multiple bits from the signal in response to harmonic energy from a harmonic frequency generated by the multiple-bit Walsh code sequence. Also, the transceiver modulates an M-Sequence code with the multi-bit Walsh code sequence up to a desired frequency band associated with the predetermined frequency in order to improve auto-correlation after passing through the body channel.