Abstract:
Described herein is a method and precursor composition for depositing a multicomponent film. In one embodiment, the method and composition described herein is used to deposit a germanium-containing film such as Germanium Tellurium, Antimony Germanium, and Germanium Antimony Tellurium (GST) films via an atomic layer deposition (ALD) and/or other germanium, tellurium and selenium based metal compounds for phase change memory and photovoltaic devices. In this or other embodiments, the Ge precursor used comprises trichlorogermane.
Abstract:
Methods for forming silicon nitride films are disclosed that comprise the steps of: providing a substrate in a reactor; introducing into the reactor an at least one organoaminosilane having a least one SiH3 group described herein wherein the at least one organoaminosilane reacts on at least a portion of the surface of the substrate to provide a chemisorbed layer; purging the reactor with a purge gas; introducing a plasma comprising nitrogen and an inert gas into the reactor to react with at least a portion of the chemisorbed layer and provide at least one reactive site wherein the plasma is generated at a power density ranging from about 0.01 to about 1.5 W/cm2.
Abstract:
Described herein are methods for forming a Group 13 metal or metalloid nitride film. In one aspect, there is provided a method of forming an aluminum nitride film comprising the steps of: providing a substrate in a reactor; introducing into the reactor an at least one aluminum precursor which reacts on at least a portion of the surface of the substrate to provide a chemisorbed layer; purging the reactor with a purge gas; introducing a plasma comprising non-hydrogen containing nitrogen plasma into the reactor to react with at least a portion of the chemisorbed layer and provide at least one reactive site wherein the plasma is generated at a power density ranging from about 0.01 to about 1.5 W/cm2; and optionally purge the reactor with an inert gas; and wherein the steps are repeated until a desired thickness of the aluminum nitride film is obtained.
Abstract:
Described herein is a method and precursor composition for depositing a multicomponent film. In one embodiment, the method and composition described herein is used to deposit a germanium-containing film such as Germanium Tellurium, Antimony Germanium, and Germanium Antimony Tellurium (GST) films via an atomic layer deposition (ALD) and/or other germanium, tellurium and selenium based metal compounds for phase change memory and photovoltaic devices. In this or other embodiments, the Ge precursor used trichlorogermane.
Abstract:
Described herein is a method and precursor composition for depositing a multicomponent film. In one embodiment, the method and composition described herein is used to deposit a germanium-containing film such as Germanium Tellurium, Antimony Germanium, and Germanium Antimony Tellurium (GST) films via an atomic layer deposition (ALD) and/or other germanium, tellurium and selenium based metal compounds for phase change memory and photovoltaic devices. In this or other embodiments, the Ge precursor used comprises trichlorogermane.
Abstract:
Sterically hindered imidazolate ligands are described, along with their synthesis, which are capable of coordinating to Group 2 metals, such as: calcium, magnesium, strontium, in an eta-5 coordination mode which permits the formation of monomeric or dimeric volatile complexes.A compound comprising one or more polysubstituted imidazolate anions coordinated to a metal selected from the group consisting of barium, strontium, magnesium, radium or calcium or mixtures thereof. Alternatively, one anion can be substituted with and a second non-imidazolate anion.Synthesis of the novel compounds and their use to form BST films is also contemplated
Abstract:
Described herein are boron-containing precursor compounds, and compositions and methods comprising same, for forming boron-containing films. In one aspect, the film is deposited from at least one precursor having the following Formula I or II described herein.
Abstract:
Described herein are methods for forming a Group 13 metal or metalloid nitride film. In one aspect, there is provided a method of forming an aluminum nitride film comprising the steps of: providing a substrate in a reactor; introducing into the reactor an at least one aluminum precursor which reacts on at least a portion of the surface of the substrate to provide a chemisorbed layer; purging the reactor with a purge gas; introducing a plasma comprising non-hydrogen containing nitrogen plasma into the reactor to react with at least a portion of the chemisorbed layer and provide at least one reactive site wherein the plasma is generated at a power density ranging from about 0.01 to about 1.5 W/cm2; and optionally purge the reactor with an inert gas; and wherein the steps are repeated until a desired thickness of the aluminum nitride film is obtained.
Abstract:
Described herein are methods for forming silicon nitride films. In one aspect, there is provided a method of forming a silicon nitride film comprising the steps of: providing a substrate in a reactor; introducing into the reactor an at least one organoaminosilane having a least one SiH3 group described herein wherein the at least one organoaminosilane reacts on at least a portion of the surface of the substrate to provide a chemisorbed layer; purging the reactor with a purge gas; introducing a plasma comprising nitrogen and an inert gas into the reactor to react with at least a portion of the chemisorbed layer and provide at least one reactive site wherein the plasma is generated at a power density ranging from about 0.01 to about 1.5 W/cm2.
Abstract translation:这里描述了形成氮化硅膜的方法。 在一个方面,提供一种形成氮化硅膜的方法,包括以下步骤:在反应器中提供衬底; 向反应器中引入至少一种本文所述的至少一种具有至少一个SiH 3基团的有机氨基硅烷,其中所述至少一种有机氨基硅烷在所述基材的至少一部分表面上反应以提供化学吸附层; 用吹扫气净化反应器; 将包含氮气和惰性气体的等离子体引入反应器中以与化学吸附层的至少一部分反应并提供至少一个反应性位点,其中以约0.01至约1.5W / cm 2的功率密度产生等离子体。