Abstract:
A sound wave absorbing laminate composite material structure for an aircraft including stacked plies of a hybrid composite material, wherein each of the hybrid composite material plies includes first polymer material tows parallel to a warp direction, second polymer material tows parallel to a weft direction, and sound absorbent material tows parallel to the warp direction, wherein the first and second polymer material tows carbon or glass fiber reinforcing polymer.
Abstract:
Provided is a structure of composite material, comprising a continuous first layer of composite material, a second layer of viscoelastic material, and a continuous impact-protection third layer. The first layer is formed by structural components in the form of a matrix and fibers. The second layer of viscoelastic material is added on top of the first layer and said second layer can be continuous or non-continuous. If a non-continuous second layer is used, elongate, circular or square cavities are arranged inside the layer. Optionally, reinforcements comprising carbon nanofibers or nanotubes are provided in either of the first and second layers. The third layer of impact-protection material is added in a continuous manner on top of the second layer, the third layer forming the outermost layer of the composite material. In addition, this third layer is electrically conductive. The composite material has noise attenuation,
Abstract:
A bipolar plate for a proton exchange membrane fuel cell includes a laminate of carbon fiber reinforced plastic (CFRP) with a first outer ply. The CFRP includes a resin and carbon fibers. The first outer ply is arranged at a first lateral surface of the laminate, wherein the laminate includes a first plurality of carbon nanotubes (CNTs). The first outer ply includes a first groove, wherein the first groove is configured to define a first gas diffusion channel. At least some of the first plurality of CNTs extend through the first outer ply in a direction transversely to the first lateral surface of the laminate.
Abstract:
A structural composite component, in particular for an aircraft or spacecraft, includes: a lightning strike protection layer; and a composite battery including a cathode layer and a separation layer, wherein the lightning strike protection layer is formed integrated with the cathode layer, and wherein the separation layer is configured for providing acoustic damping, and/or fire barrier, and/or impact resistance to the structural composite component. A method for configuring such a structural composite component; and an aircraft or spacecraft including such a structural composite component are also described.
Abstract:
A multifunctional diffusion barrier comprising at least one organic polymer and a 2D graphene or 2D graphene derivative material and a method for preparing the multifunctional barrier. The multifunctional diffusion barrier can be used as a liquid and/or gas barrier, or as structural material, or as sealing material, or as a self-cleaning material or as protective material against UV radiation in aeronautical, automotive, marine or building field. The multifunctional diffusion barrier is suitable in producing parts of aircraft such as a fuel tank, a fuel tank conduit and a gasket.
Abstract:
A structural composite component, in particular for an aircraft or spacecraft, includes: a lightning strike protection layer; and a composite battery including a cathode layer and a separation layer, wherein the lightning strike protection layer is formed integrated with the cathode layer, and wherein the separation layer is configured for providing acoustic damping, and/or fire barrier, and/or impact resistance to the structural composite component. A method for configuring such a structural composite component; and an aircraft or spacecraft including such a structural composite component are also described.
Abstract:
Provided is a structure of composite material, comprising a continuous first layer of composite material, a second layer of viscoelastic material, and a continuous impact-protection third layer. The first layer is formed by structural components in the form of a matrix and fibers. The second layer of viscoelastic material is added on top of the first layer and said second layer can be continuous or non-continuous. If a non-continuous second layer is used, elongate, circular or square cavities are arranged inside the layer. Optionally, reinforcements comprising carbon nanofibers or nanotubes are provided in either of the first and second layers. The third layer of impact-protection material is added in a continuous manner on top of the second layer, the third layer forming the outermost layer of the composite material. In addition, this third layer is electrically conductive. The composite material has noise attenuation, impact resistance and electric conductivity properties.