Abstract:
The disclosed technology generally relates to forming metallization structures for integrated circuit devices by plating, and more particularly to plating metallization structures that are thicker than masking layers used to define the metallization structures. In one aspect, a method of metallizing an integrated circuit device includes plating a first metal on a substrate in a first opening formed through a first masking layer, where the first opening defines a first region of the substrate, and plating a second metal on the substrate in a second opening formed through a second masking layer, where the second opening defines a second region of the substrate. The second opening is wider than the first opening and the second region encompasses the first region of the substrate.
Abstract:
The disclosure relates to the manufacture of inductive components, in particular transformers, using a combination of microfabrication techniques and discrete component placement. By using a prefabricated core, the core may be made much thicker than one that is deposited using microfabrication techniques. As such, saturation occurs later and the efficiency of the transformer is improved. This is done at a much lower cost than the cost of producing a thicker core by depositing multiple layers using microfabrication techniques.
Abstract:
The disclosed technology generally relates to forming metallization structures for integrated circuit devices by plating, and more particularly to plating metallization structures that are thicker than masking layers used to define the metallization structures. In one aspect, a method of metallizing an integrated circuit device includes plating a first metal on a substrate in a first opening formed through a first masking layer, where the first opening defines a first region of the substrate, and plating a second metal on the substrate in a second opening formed through a second masking layer, where the second opening defines a second region of the substrate. The second opening is wider than the first opening and the second region encompasses the first region of the substrate.
Abstract:
The disclosed technology generally relates to forming metallization structures for integrated circuit devices by plating, and more particularly to plating metallization structures that are thicker than masking layers used to define the metallization structures. In one aspect, a method of metallizing an integrated circuit device includes plating a first metal on a substrate in a first opening formed through a first masking layer, where the first opening defines a first region of the substrate, and plating a second metal on the substrate in a second opening formed through a second masking layer, where the second opening defines a second region of the substrate. The second opening is wider than the first opening and the second region encompasses the first region of the substrate.
Abstract:
A method of trimming a component is provided in which the component is protected from oxidation or changes in stress after trimming. As part of the method, a protective glass cover is bonded to the surface of a semiconductor substrate prior to trimming (e.g., laser trimming) of a component. This can protect the component from oxidation after trimming, which may change its value or a parameter of the component. It can also protect the component from changes in stress acting on it or on the die adjacent it during packaging, which may also change a value or parameter of the component.
Abstract:
A magnetic core is provided for an integrated circuit, the magnetic core comprising: a plurality of layers of magnetically functional material; a plurality of layers of a first insulating material; and at least one layer of an secondary insulating material; wherein layers of the first insulating material are interposed between layers of the magnetically functional material to form subsections of the magnetic core, and the at least one layer of second insulating material is interposed between adjacent subsections.
Abstract:
A method of trimming a component is provided in which the component is protected from oxidation or changes in stress after trimming. As part of the method, a protective glass cover is bonded to the surface of a semiconductor substrate prior to trimming (e.g., laser trimming) of a component. This can protect the component from oxidation after trimming, which may change its value or a parameter of the component. It can also protect the component from changes in stress acting on it or on the die adjacent it during packaging, which may also change a value or parameter of the component.