Abstract:
A method and apparatus for cleaning the bevel of a semiconductor substrate. The apparatus generally includes a cell body having upstanding walls and a fluid drain basin, a rotatable vacuum chuck positioned centrally positioned in the fluid drain basin, and at least 3 substrate centering members positioned at equal radial increments around the rotatable vacuum chuck. The substrate centering members include a vertically oriented shaft having a longitudinal axis extending therethrough, a cap member positioned over an upper terminating end of the shaft, a raised central portion formed onto the cap member, the raised central portion having a maximum thickness at a location the coincides with the longitudinal axis, and a substrate centering post positioned on the cap member radially outward of the raised central portion, an upper terminating end of the substrate centering post extending from the cap member to a distance that exceeds the maximum thickness. The apparatus further includes a centering actuation mechanism in communication with the substrate centering posts, and a fluid dispensing arm pivotally connected to the cell body, the fluid dispensing arm being configured to dispense a processing fluid onto a first side of the substrate.
Abstract:
Embodiments of the invention generally provide an electrochemical plating system. The plating system includes a substrate loading station positioned in communication with a mainframe processing platform, at least one substrate plating cell positioned on the mainframe, at least one substrate bevel cleaning cell positioned on the mainframe, and a stacked substrate annealing station positioned in communication with at least one of the mainframe and the loading station, each chamber in the stacked substrate annealing station having a heating plate, a cooling plate, and a substrate transfer robot therein.
Abstract:
Methods and apparatus are provided for increasing the safety of a clogged or failed exhaust system. In accordance with a first embodiment, an apparatus is provided that includes (1) a tank adapted to contain a processing fluid; (2) an exhaust system coupled to the tank and adapted to exhaust a gas from the tank, the gas including a hazardous vapor of the processing fluid; (3) a sensor coupled to the exhaust system and adapted to detect a rate at which gas is exhausted from the tank; and (4) a fluid supply mechanism adapted to supply a diluting fluid to the tank so as to dilute the processing fluid contained by the tank if the rate at which gas is exhausted from the tank is less than a predetermined rate. Systems, methods and computer program products are provided in accordance with this and other embodiments.