摘要:
Embodiments of the invention generally provide a substrate spin rinse dry cell that may be used in a semiconductor processing system. The cell generally includes a cell body defining an interior processing volume, and a rotatable substrate support member positioned in the processing volume. The rotatable substrate support member includes a rotatable hub assembly having a plurality of upstanding substrate engaging members extending therefrom, and a central member positioned radially inward of the plurality of upstanding substrate engaging members, the central member having a plurality of backside fluid dispensing nozzles and at least one backside gas dispensing nozzle positioned thereon. The cell further includes at least one frontside fluid dispensing nozzle positioned to dispense a rinsing fluid onto an upper surface of a substrate supported by the substrate support member, and at least one frontside gas dispensing nozzle positioned to dispense a drying gas into the processing volume, the drying gas being directed toward the upper substrate surface.
摘要:
A method and apparatus for depositing a low dielectric constant film by reaction of an organosilicon compound and an oxidizing gas comprising carbon at a constant RF power level. Dissociation of the oxidizing gas can be increased prior to mixing with the organosilicon compound, preferably within a separate microwave chamber, to assist in controlling the carbon content of the deposited film. The oxidized organosilane or organosiloxane film has good barrier properties for use as a liner or cap layer adjacent other dielectric layers. The oxidized organosilane or organosiloxane film may also be used as an etch stop and an intermetal dielectric layer for fabricating dual damascene structures. The oxidized organosilane or organosiloxane films also provide excellent adhesion between different dielectric layers.
摘要:
A method and apparatus for depositing a low dielectric constant film by reaction of an organosilicon compound and an oxidizing gas at a constant RF power level from about 10W to about 200W or a pulsed RF power level from about 20W to about 500W. Dissociation of the oxidizing gas can be increased prior to mixing with the organosilicon compound, preferably within a separate microwave chamber, to assist in controlling the carbon content of the deposited film. The oxidized organosilane or organosiloxane film has good barrier properties for use as a liner or cap layer adjacent other dielectric layers. The oxidized organosilane or organosiloxane film may also be used as an etch stop and an intermetal dielectric layer for fabricating dual damascene structures. The oxidized organosilane or organosiloxane films also provide excellent adhesion between different dielectric layers. A preferred oxidized organosilane film is produced by reaction of methylsilane, CH3SiH3, dimethylsilane, (CH3)2SiH2, or 1,1,3,3-tetramethyl-disiloxane, (CH3)2nullSiHnullOnullSiHnull(CH3)2, and nitrous oxide, N2O, at a constant RF power level from about 10W to about 150W, or a pulsed RF power level from about 20W to about 250W during 10% to 30% of the duty cycle.
摘要:
A method of forming a silicon oxide layer over a substrate disposed in a high density plasma substrate processing chamber. The silicon oxide layer is formed by flowing a process gas including a silicon-containing source, an oxygen-containing source, an inert gas and a hydrogen-containing source into the substrate processing chamber and forming a high density plasma (i.e., a plasma having an ion density of at least 1null1011 ions/cm3) from the process gas to deposit said silicon oxide layer over said substrate. In one embodiment, the hydrogen-containing source in the process gas is selected from the group of H2, H2O, NH3, CH4 and C2H6.
摘要翻译:在设置在高密度等离子体基板处理室中的基板上形成氧化硅层的方法。 氧化硅层通过将包含含硅源,含氧源,惰性气体和含氢源的处理气体流入基板处理室而形成,并形成高密度等离子体(即,具有 离子密度为至少1×10 11个离子/ cm 3),以将所述氧化硅层沉积在所述衬底上。 在一个实施方案中,工艺气体中的含氢源选自H 2,H 2 O,NH 3,CH 4和C 2 H 6。
摘要:
A support for a substrate processing chamber has upper and lower walls that are joined by a peripheral sidewall to define a reservoir. A fluid inlet supplies a heat transfer fluid to the reservoir. In one version, a plurality of protrusions extends into the reservoir to perturb the flow of the heat transfer fluid through the reservoir. In another version, the reservoir is an elongated channel having one or more of (i) serpentine convolutions, (ii) integral fins extending into the channel, (iii) a roughened internal surface, or (iv) a changing cross-section. A fluid outlet discharges the heat transfer fluid from the reservoir.
摘要:
An integrated process and system for etching a hole in an oxide layer and conformally coating a liner for metal filling. The wafer with a patterned photoresist mask is loaded into a first transfer chamber held at a vacuum of less than 1 Torr. An oxide etch reactor etches the oxide down to a nitride etch stop and barrier layer to form a hole through the oxide. Thereafter, the photoresist is ashed, and the barrier layer is removed. The wafer is transferred through a gated vacuum passageway to a second transfer chamber held at a vacuum no more than 10null6 Torr. In at least two PVD or CVD deposition chambers connected to the second transfer chamber, a barrier layer of Ta/TaN is coated onto sides of the hole and a copper seed layer is deposited over the barrier layer. The invention may be limited to the operations subsequent to ashing.
摘要:
A method is provided for depositing a thin film on a substrate in a process chamber with reduced incidence of plasma charge damage. A process gas containing a precursor gases suitable for forming a plasma is flowed into a process chamber, and a plasma is generated from the process gas to deposit the thin film on the substrate. The precursor gases are flowed into the process chamber such that the thin film is deposited at the center of the substrate more rapidly than at an edge of the substrate.
摘要:
A method and apparatus for forming a layer on a substrate in a process chamber during a plasma deposition process are provided. A plasma is formed in a process chamber, a process gas with precursor gases suitable for depositing the layer are flowed into the process chamber, and a magnetic field having a strength less than about 0.5 gauss is attenuated within the process chamber. Attenuation of such a magnetic field results in an improvement in the degree of process uniformity achieved during the deposition.
摘要:
A workpiece support having dichotomy of thermal paths therethrough is provided for controlling the temperature of a workpiece support thereon. In one embodiment, a workpiece support includes a platen body having a plug centrally disposed in a workpiece support surface of the platen body. A lower surface of the plug defines a void between the plug and a bottom of the bore. The void creates a dichotomy of thermal paths through the platen body thus controlling the temperature of a wafer support surface. Alternatively, the plug and platen body may be fabricated from materials having different rates of thermal conductivity to created the dichotomy of thermal paths in addition to or in absence of the void.
摘要:
The present invention is directed to the design of a plasma CVD chamber which provides more uniform conditions for forming thin CVD films on a substrate. Embodiments of the invention improve temperature control of the upper chamber and improve particle performance by reducing or minimizing the temperature fluctuations on the dome between the deposition and non-deposition cycles. This allows higher source power plasma to be generated and facilitates gapfill for extremely small geometries. The dome design improves the uniformity of the plasma distribution over the substrate to be processed. In accordance with an aspect of the present invention, an apparatus for processing semiconductor substrates comprises a chamber defining a plasma processing region therein. The chamber includes a bottom, a side wall, and a dome disposed on top of the side wall. The dome has a dome top and having a side portion defining a chamber diameter. A top RF coil is disposed above the dome top. A side RF coil is disposed adjacent the side portion of the dome. The side RF coil is spaced from the top RF coil by a coil separation. A ratio of the coil separation to the chamber diameter is typically at least about 0.15, more desirably about 0.2-0.25. In some embodiments, a vacuum system includes a pump and a throttle gate valve disposed in a lower chamber portion of the chamber near the bottom. A screen previously disposed below the gate valve may be moved above the gate valve to facilitate cleaning and reduce particulates.