Abstract:
Methods disclosed herein provide apparatus and method for applying an electric field and/or a magnetic field to a photoresist layer without air gap intervention during photolithography processes. In one embodiment, an apparatus includes a processing chamber comprising a substrate support having a substrate supporting surface, a heat source embedded in the substrate support configured to heat a substrate positioned on the substrate supporting surface, an electrode assembly configured to generate an electric field in a direction substantially perpendicular to the substrate supporting surface, wherein the electrode assembly is positioned opposite the substrate supporting surface having a downward surface facing the substrate supporting surface, wherein the electrode assembly is spaced apart from substrate support defining a processing volume between the electrode assembly and the substrate supporting surface, and a confinement ring disposed on an edge of the substrate support or the electrode assembly configured to retain an intermediate medium.
Abstract:
A method and apparatus for exposing a photoresist in the presence of an electric field using a high power continuous wave source as a radiation source is disclosed herein. In one embodiment, a processing region includes a stage, a translation mechanism, a continuous wave electromagnetic module, and plurality of electrode assemblies. The continuous wave electromagnetic module includes a continuous wave electromagnetic radiation source in the form of a high power continuous wave electromagnetic laser. An electric field is applied to the surface of the substrate using the plurality of electrode assemblies while the continuous wave electromagnetic radiation source selectively irradiates the surface of the substrate.
Abstract:
Embodiments described herein generally relate to methods for mitigating patterning defects. More specifically, embodiments described herein relate to utilizing field guided post exposure bake processes to mitigate microbridge photoresist defects. An electric field may be applied to a substrate being processed during a post exposure bake process. Photoacid generated as a result of the exposure may be moved along a direction defined by the electric field. The movement of the photoacid may contact microbridge defects and facilitate the removal of the microbridge defects from the surface of a substrate.
Abstract:
Methods disclosed herein provide apparatus and methods for applying an electric field and/or a magnetic field to a photoresist layer without air gap intervention during photolithography processes. In one embodiment, an apparatus includes a processing chamber configured to apply an electric field to a substrate via a non-gas phase intermediate medium. Methods described herein include dissociation of a photoacid generator to generate anions and cations. The anions may be moved within the photoresist layer by the electric field to more precisely control the speed and location of acid generation and regeneration processes.
Abstract:
Embodiments described herein generally relate to methods for mitigating patterning defects. More specifically, embodiments described herein relate to utilizing field guided post exposure bake processes to mitigate microbridge photoresist defects. An electric field may be applied to a substrate being processed during a post exposure bake process. Photoacid generated as a result of the exposure may be moved along a direction defined by the electric field. The movement of the photoacid may contact microbridge defects and facilitate the removal of the microbridge defects from the surface of a substrate.
Abstract:
A method of processing a substrate is disclosed herein. The method includes applying a photoresist layer comprising a photoacid generator to a substrate, wherein a first portion of the photoresist layer has been exposed unprotected by a photomask to a radiation light in a lithographic exposure process. The method also includes applying an electric field to alter movement of photoacid generated from the photoacid generator substantially in a vertical direction, wherein the electric field is applied by a first alternating pair of a positive voltage electrode and a negative voltage electrode and a second alternating pair of a positive voltage electrode and a negative voltage electrode.
Abstract:
Implementations described herein relate to apparatus and methods for performing atomic layer etching (ALE). Pulsed plasma generation and subsequent bias application to plasma afterglow may provide for improved ALE characteristics. Apparatus described herein provide for plasma generation from one or more plasma sources and biasing of plasma afterglow to facilitate material removal from a substrate.
Abstract:
Methods disclosed herein provide apparatus and methods for applying an electric field and/or a magnetic field to a photoresist layer without air gap intervention during photolithography processes. In one embodiment, an apparatus includes a processing chamber configured to apply an electric field to a substrate via a non-gas phase intermediate medium. Methods described herein include dissociation of a photoacid generator to generate anions and cations. The anions may be moved within the photoresist layer by the electric field to more precisely control the speed and location of acid generation and regeneration processes.
Abstract:
The present invention provides an apparatus having a plasma profile control plate disposed in a plasma processing chamber so as to locally alter plasma density to provide uniform plasma distribution across a substrate surface during processing. In one embodiment, a process kit includes a plate configured to be disposed in a plasma processing chamber, a plurality of apertures formed therethrough, the apertures configured to permit processing gases to flow through the plate, and an array of unit cells including at least one aperture formed in the plate, wherein each unit cell has an electrode assembly individually controllable relative to electrode assemblies disposed in at least two other unit cells.