Abstract:
Disclosed herein are a showerhead and a deposition chamber containing the showerhead. The showerhead includes a first delivery network for a first precursor that comprises a first manifold connected with a first distribution system comprising a plurality of first distribution channels concentrically disposed around an axis, and a second delivery network for a second precursor that comprises a second manifold connected with a second distributions system comprising a plurality of second distribution channels concentrically disposed around the axis. The first delivery network and the second delivery network are isolated from each other within the showerhead.
Abstract:
Disclosed herein is a processing system. The processing system has an upper chamber body and a lower chamber body defining a processing environment. An upper heater is moveably disposed in the upper chamber body. The upper heater has a moveable support and an upper step formed along an outer perimeter. A lower showerhead is fixedly disposed in the lower chamber body. The lower showerhead includes a top surface configured to support a substrate, a lower step disposed along an outer perimeter wherein the substrate is configured to extend from the top surface partially over the lower step. Lift pins are disposed in the lower showerhead and configured to extend through the top surface and support the substrate thereon. Gas holes are disposed in a first zone along the top surface and a second zone on the step and configured to independently flow both a process and non-process gas.
Abstract:
Examples of a substrate support are provided herein. In some examples, the substrate support has a ceramic electrostatic chuck having a body. The body has a first side configured to support a substrate and a second side opposite the first side. The body has a chucking electrode, an active edge electrode disposed adjacent the chucking electrode, a floating mesh disposed below the chucking electrode, a heater disposed below the floating mesh, and a ground mesh disposed below the heater, wherein the ground mesh is adjacent the second side.
Abstract:
Embodiments of the present disclosure relate to gas abatement apparatus and effluent management. The apparatus described herein include a high pressure process chamber and a containment chamber surrounding the process chamber. A high pressure fluid delivery module is in fluid communication with the high pressure process chamber and is configured to deliver a high pressure fluid to the process chamber. An effluent management module includes a muffler assembly to effluent pressure reduction and a plurality of scrubbers provide for treatment of effluent.
Abstract:
The present disclosure relates to high pressure processing apparatus for semiconductor processing. The apparatus described herein include a high pressure process chamber and a containment chamber surrounding the process chamber. A high pressure fluid delivery module is in fluid communication with the high pressure process chamber and is configured to deliver a high pressure fluid to the process chamber.
Abstract:
A high-pressure processing system for processing a substrate includes a first chamber, a pedestal positioned within the first chamber to support the substrate, a second chamber adjacent the first chamber, a vacuum processing system configured to lower a pressure within the second chamber to near vacuum, a valve assembly between the first chamber and the second chamber to isolate the pressure within the first chamber from the pressure within the second chamber, and a gas delivery system configured to introduce a processing gas into the first chamber and to increase the pressure within the first chamber to at least 10 atmospheres while the processing gas is in the first chamber and while the first chamber is isolated from the second chamber.
Abstract:
A method of processing a substrate is disclosed herein. The method includes applying a photoresist layer comprising a photoacid generator to a substrate, wherein a first portion of the photoresist layer has been exposed unprotected by a photomask to a radiation light in a lithographic exposure process. The method also includes applying an electric field to alter movement of photoacid generated from the photoacid generator substantially in a vertical direction, wherein the electric field is applied by a first alternating pair of a positive voltage electrode and a negative voltage electrode and a second alternating pair of a positive voltage electrode and a negative voltage electrode.
Abstract:
Apparatus and method for substrate processing are described herein. More specifically, the apparatus and method are directed towards apparatus and method for performing a field guided post exposure bake operation on a semiconductor substrate. The apparatus is a processing module (100) and includes an upper portion (102) with an electrode (400) and a base portion (104) which is configured to support a substrate (500) on a substrate support surface (159). The upper portion (102) and the base portion (104) are actuated toward and away from one another using one or more arms (112) and form a process volume (404). The process volume (404) is filled with a process fluid and the processing module (100) is rotated about an axis (A). An electric field is applied to the substrate (500) by the electrode (400) before the process fluid is drained from the process volume (404).
Abstract:
Embodiments disclosed herein may include an electrostatic chuck (ESC) carrier. In an embodiment, the ESC carrier may comprise a carrier substrate having a first surface and a second surface opposite the first surface. In an embodiment, a first through substrate opening and a second through substrate opening may pass through the carrier substrate from the first surface to the second surface. Embodiments may include a first conductor in the first through substrate opening, and a second conductor in the second through substrate opening. In an embodiment, the ESC carrier may further comprise a first electrode over the first surface of the carrier substrate and electrically coupled to the first conductor, and a second electrode over the first surface of the carrier substrate and electrically coupled to the second conductor. In an embodiment, an oxide layer may be formed over the first electrode and the second electrode.
Abstract:
A method and apparatus for delivering gases to a semiconductor processing system are provided. In some embodiments, the apparatus includes a gas inlet line having an inlet valve; a gas outlet line having an outlet valve; a gas flow controller arranged to control the flow through the inlet valve; an orifice contained within at least one of the gas outlet line, the outlet valve, a chemical ampoule outlet valve, or outlet isolation valve; a chemical ampoule fluidly coupled to at least one of the gas inlet line and the gas outlet line; and a processing chamber. In some embodiments, the apparatus further includes a check valve, one or more orifices, and/or a heated divert line.