Abstract:
A method of selecting a periodic modulation to be applied to a variable of a radiation source, wherein the source delivers radiation for projection onto a substrate and wherein there is relative motion between the substrate and the radiation at a scan speed, the method including: for a set of system parameters and for a position on the substrate, calculating a quantity, the quantity being a measure of the contribution to an energy dose delivered to the position that arises from the modulation being applied to the variable of the source, wherein the contribution to the energy dose is calculated as a convolution of: a profile of radiation, and a contribution to an irradiance of radiation delivered by the source; and selecting a modulation frequency at which the quantity for the set of system parameters and the position on the substrate satisfies a certain criteria.
Abstract:
A support apparatus for a lithographic apparatus has an object holder and an extraction body radially outward of the object holder. The object holder is configured to support an object. The extraction body includes an extraction opening configured to extract fluid from a top surface of the support apparatus. The extraction body is spaced from the object holder such that the extraction body is substantially decoupled from the object holder. The extraction body comprises a projection configured such that it surrounds the object holder and such that, in use, a layer of liquid is retained on the projection and in contact with an object supported on the object holder.
Abstract:
A support apparatus configured to support an object, the support apparatus includes a support body including an object holder to hold an object; an opening in the support body adjacent to an edge of the object holder; a channel in fluid communication with the opening via each of a plurality of passageways in the support body; and a passageway liner mounted in at least one of the plurality of passageways, the passageway liner being thermally insulating to substantially thermally decouple the support body from fluid in the at least one of the plurality of passageways.