Abstract:
A lithographic apparatus is provided. The lithographic apparatus includes a reticle and an electrostatic clamp configured to releasably hold the reticle. The electrostatic clamp includes a first substrate having opposing first and second surfaces, a plurality of burls located on the first surface and configured to contact the reticle, a second substrate having opposing first and second surfaces. The first surface of the second substrate is coupled to the second surface of the first substrate. A plurality of cooling elements are located between the first surface of the second substrate and the second surface of the first substrate. The cooling elements are configured to cause electrons to travel from the second surface of the first substrate to the first surface of the second substrate. Each cooling element is substantially aligned with a respective burl.
Abstract:
A substrate table for supporting a substrate includes a surface and coarse burls. Each of the coarse burls includes a burl-top surface and fine burls. The coarse burls are disposed on the surface of the substrate table. The fine burls are disposed on the burl-top surface. The fine burls contact the substrate when the substrate table supports the substrate.
Abstract:
A support such as a clamp (310) is configured to releasably hold a patterning device such as a reticle (300) to secure it and prevent heat-induced deformation of it. For example, an electrostatic clamp includes a first substrate (312) having opposing first (313) and second (315) surfaces, a plurality of burls (316) located on the first surface and configured to contact the reticle, a second substrate (314) having opposing first (317) and second (319) surfaces. The first surface of the second substrate is coupled to the second surface of the first substrate. A plurality of cooling elements (318) are located between the first surface of the second substrate and the second surface of the first substrate. The cooling elements are configured to cause electrons to travel from the second surface of the first substrate to the first surface of the second substrate. Each cooling element is substantially aligned with a respective burl.
Abstract:
An object holder configured to support an object, the object holder comprising: a core body comprising a plurality of burls having distal ends in a support plane for supporting the object; an electrostatic sheet between the burls, the electrostatic sheet comprising an electrode sandwiched between dielectric layers; and a circumferential barrier for reducing outflow of gas escaping from space between the object and the core body.
Abstract:
A lithographic apparatus includes a clamp (406) configured to receive an object (402). The clamp defines at least one channel (408) configured to pass a fluid at a first fluid temperature. The lithographic apparatus also includes a chuck (404) coupled to the clamp. The chuck (404) defines at least one void (464) configured to thermally insulate the chuck from the clamp.
Abstract:
A lithographic apparatus includes a clamp (406) configured to receive an object (402). The clamp defines at least one channel (408) configured to pass a fluid at a first fluid temperature. The lithographic apparatus also includes a chuck (404) coupled to the clamp. The chuck (404) defines at least one void (464) configured to thermally insulate the chuck from the clamp.
Abstract:
A lithographic apparatus is provided. The lithographic apparatus includes a reticle and an electrostatic clamp configured to releasably hold the reticle. The electrostatic clamp includes a first substrate having opposing first and second surfaces, a plurality of burls located on the first surface and configured to contact the reticle, a second substrate having opposing first and second surfaces. The first surface of the second substrate is coupled to the second surface of the first substrate. A plurality of cooling elements are located between the first surface of the second substrate and the second surface of the first substrate. The cooling elements are configured to cause electrons to travel from the second surface of the first substrate to the first surface of the second substrate. Each cooling element is substantially aligned with a respective burl.
Abstract:
A lithographic projection apparatus is disclosed for use with an immersion liquid positioned between the projection system and a substrate. Several methods and mechanism are disclosed to protect components of the projection system, substrate table and a liquid confinement system. These include providing a protective coating on a final element of the projection system as well as providing one or more sacrificial bodies upstream of the components. A two component final optical element of CaF2 is also disclosed.
Abstract:
A lithographic apparatus includes an illumination system, support constructed to support patterning device, a projection system, an interferometric sensor and a detector. The interferometric sensor is designed to measure one or more wavefronts of a radiation beam projected by the projection system from an adjustable polarizer. The interferometric sensor includes a diffractive element disposed at a level of a substrate in the lithographic apparatus and a detector spaced apart from the diffractive element, the diffractive element being arranged to provide shearing interferometry between at least two wavefronts mutually displaced in a direction of shear. The detector is designed to determine, from the wavefront measurements, information on polarization affecting properties of the projection system.
Abstract:
A lithographic projection apparatus is disclosed for use with an immersion liquid positioned between the projection system and a substrate, Several methods and mechanism are disclosed to protect components of the projection system, substrate table and a liquid confinement system. These include providing a protective coating on a final element of the projection system as well as providing one or more sacrificial bodies upstream of the components. A two component final optical element of CaF2 is also disclosed.