Abstract:
A single element electrical connector includes a single conductive contact element formed into a cage structure having a wire insert end and a wire contact end along a longitudinal centerline axis of the connector. The cage structure defines an upper pick-up surface having a surface area suitable for placement of a suction nozzle of a vacuum transfer device, as well as a pair of contact tines biased towards the centerline axis to define a contact pinch point for an exposed core of a wire inserted into the connector. A contact surface is defined by a member of the cage structure for electrical mating contact with a respective contact element on a component on which the connector is mounted.
Abstract:
An apparatus includes an insulated body, a conductive contact disposed in the insulated body, and a button disposed on the insulated body. The insulated body can receive a wire through an opening in the insulated body. The conductive contact contacts the wire and secures the wire through a compression force exerted on the wire. The button has a neutral position and a depressed position, and the button in the depressed position is configured to reduce the compression force exerted on the wire.
Abstract:
An apparatus includes an insulated body, a conductive contact disposed in the insulated body, and a button disposed on the insulated body. The insulated body can receive a wire through an opening in the insulated body. The conductive contact contacts the wire and secures the wire through a compression force exerted on the wire. The button has a neutral position and a depressed position, and the button in the depressed position is configured to reduce the compression force exerted on the wire.
Abstract:
A single element electrical connector includes a single conductive contact element formed into a cage structure having a wire insert end and a wire contact end along a longitudinal centerline axis of the connector. The cage structure defines an upper pick-up surface having a surface area suitable for placement of a suction nozzle of a vacuum transfer device, as well as a pair of contact tines biased towards the centerline axis to define a contact pinch point for an exposed core of a wire inserted into the connector. A contact surface is defined by a member of the cage structure for electrical mating contact with a respective contact element on a component on which the connector is mounted.
Abstract:
An LED light assembly includes a plurality of LED printed circuit boards (PCB), with each LED PCB having at least one LED bulb and electrical connector pads configured at each opposite end of the boards. A two-component surface mount electrical connector is configured to connect one end of a first LED PCB to an end of a second said LED PCB such that the first and second LED PCBs are electrically connected end-to-end. The connected LED PCBs may be configured in a light tube that includes connector end caps for mounting the light tube in a light fixture.
Abstract:
This disclosure provides for an apparatus for connecting a first printed circuit board to a second printed circuit board. More specifically, an apparatus that includes a first receptacle assembly, a second receptacle assembly, and a contact bridge is disclosed. In an embodiment, the contact bridge conductively connects with the first receptacle assembly and the second receptacle assembly. In an embodiment, the contact bridge is disposed between sets of contact beams of the first and second receptacle assemblies.
Abstract:
A single element electrical connector includes a single conductive contact element formed into a cage structure having a wire insert end and a wire contact end along a longitudinal centerline axis of the connector. The cage structure defines an upper pick-up surface having a surface area suitable for placement of a suction nozzle of a vacuum transfer device, as well as a pair of contact tines biased towards the centerline axis to define a contact pinch point for an exposed core of a wire inserted into the connector. A contact surface is defined by a member of the cage structure for electrical mating contact with a respective contact element on a component on which the connector is mounted.
Abstract:
A single element electrical connector includes a single conductive contact element formed into a cage structure having a wire insert end and a wire contact end along a longitudinal centerline axis of the connector. The cage structure defines an upper pick-up surface having a surface area suitable for placement of a suction nozzle of a vacuum transfer device, as well as a pair of contact tines biased towards the centerline axis to define a contact pinch point for an exposed core of a wire inserted into the connector. A contact surface is defined by a member of the cage structure for electrical mating contact with a respective contact element on a component on which the connector is mounted.
Abstract:
A single element electrical connector includes a single conductive contact element formed into a cage structure having a wire insert end and a wire contact end along a longitudinal centerline axis of the connector. The cage structure defines an upper pick-up surface having a surface area suitable for placement of a suction nozzle of a vacuum transfer device, as well as a pair of contact tines biased towards the centerline axis to define a contact pinch point for an exposed core of a wire inserted into the connector. A contact surface is defined by a member of the cage structure for electrical mating contact with a respective contact element on a component on which the connector is mounted.