摘要:
A phased array antenna panel includes a first plurality of antennas, a first radio frequency (RF) front end chip, a second plurality of antennas, a second RF front end chip, and a combiner RF chip. The first and second RE front end chips receive respective first and second input signals from the first and second pluralities of antennas, and produce respective first and second output signals based on the respective first and second input signals. The combiner RF chip can receive the first and second output signals and produce a power combined output signal that is a combination of powers of the first and second output signals. Alternatively, a power combiner can receive the first and second output signals and produce a power combined output signal, and the combiner RF chip can receive the power combined output signal.
摘要:
Methods and apparatus are disclosed for wirelessly communicating among integrated circuits and/or functional modules within the integrated circuits. A semiconductor device fabrication operation uses a predetermined sequence of photographic and/or chemical processing steps to form one or more functional modules onto a semiconductor substrate. The functional modules are coupled to an integrated waveguide that is formed onto the semiconductor substrate and/or attached thereto to form an integrated circuit. The functional modules communicate with each other as well as to other integrated circuits using a multiple access transmission scheme via the integrated waveguide. One or more integrated circuits may be coupled to an integrated circuit carrier to form Multichip Module. The Multichip Module may be coupled to a semiconductor package to form a packaged integrated circuit.
摘要:
Embodiments described herein provide enhanced integrated circuit (IC) devices. In an embodiment, an IC device includes a substrate, an IC die coupled to a surface of the substrate, a first wirelessly enabled functional block located, on the IC die, the first wirelessly enabled functional block being configured to wirelessly communicate with a second wirelessly enabled functional block located on the substrate, and a ground ring configured to provide electromagnetic shielding for the first and second wirelessly enabled functional blocks.
摘要:
An integrated circuit (IC) device is provided. The IC device includes a substrate, an IC die coupled to the substrate, and a first wirelessly enabled functional block formed on the IC die. The first wirelessly enabled functional block is configured to wirelessly communicate with a second wirelessly enabled functional block formed on the substrate.
摘要:
A communication system includes a conversion module configured to convert a signal between a radio frequency baseband (RF-BB) and an intermediate frequency (IF). At least one RF front-end module converts the signal between the IF and a radio frequency (RF). The RF front-end module is configured as an RF phased array and includes a coaxial interconnect configured to connect the conversion module with the RF front-end module. The signal is transmitted between the conversion module and the RF-front end module via the coaxial interconnect. At least one RF front-end module includes an active front-end (AFE) configured to allow the signal to be transmitted via the coaxial interconnect while minimizing any deterioration of the signal.
摘要:
Disclosed herein is a configurable system of wireless-enabled components (WECs) and applications thereof. The system includes a plurality of WECs and a controller. Each WEC comprises a functional resource and is adapted to wirelessly communicate with other WECs. The controller is adapted to dynamically configure the functional resource of each WEC and wireless communications among the plurality of WECs to form a field-programmable communications array. The controller may be one of the plurality of WECs. The plurality of WECs may be located on a single chip, on multiple chips of a single device, or on multiple chips of multiple devices.
摘要:
Embodiments of the present invention are directed to a wire-free data center/server. The data center/server is wire-free in the sense that communication within a data unit of the data center/server (i.e., intra-data unit), between data units of the data center/server (inter-data unit), and between the data units and the backplane of the data center/server is performed wirelessly.
摘要:
Embodiments of the present invention are directed to a wireless resource borrowing environment enabled by a wireless bus comprising a plurality of wireless-enabled components (WECs). In an embodiment, the WECs use the wireless bus to share resource information (including resource availability information) among each others. For example, a WEC may share with other WECs information regarding its processing and memory resources. The WEC may then use the shared resource information to identify resources at other WECs that it may borrow to perform certain tasks. In an embodiment, resource borrowing is performed according to a cost-based method which optimizes resource borrowing according to a cost function. The cost function may be designed to optimize resource borrowing according to any combination of one or more factors, including power consumption, processing speed, delay, interference, error rate, reliability, load at the lender WEC, computing capability at the lender WEC, etc.
摘要:
Disclosed herein are systems, apparatuses, and methods for establishing wireless communications among a plurality of wireless-enabled components (WECs), and applications thereof. Such a system includes a plurality of WECs, each configured to transmit and receive over a wireless bus. The wireless bus includes (i) a first channel to identify proximally located WECs and (ii) a second channel to support communications among the proximally located WECs. The plurality of WECs may be located on a single chip, on multiple chips of a single device, or on multiple chips across multiple devices.
摘要:
Disclosed herein are systems, apparatuses, and methods for wirelessly coupling functional resources. Such a system includes a plurality of co-located, wireless-enabled functional units of a first type and a plurality of co-located, wireless-enabled functional units of a second type. At least one of the wireless-enabled functional units of the first type is wirelessly coupled with one or more of the wireless-enabled functional units of the second type. The wireless-enabled functional units of the first type may be wireless-enabled processing units, and the wireless-enabled functional units of the second type may be wireless-enabled memory units. In an example, the plurality of wireless-enabled functional units of the first type are co-located on a first chip, and the plurality of wireless-enabled functional units of the second type are co-located on a second chip. The first chip and the second chip may be located in a single device or in separate devices.