Self-aligned silicidation for replacement gate process
    1.
    发明授权
    Self-aligned silicidation for replacement gate process 有权
    用于替代浇口工艺的自对准硅化物

    公开(公告)号:US08361870B2

    公开(公告)日:2013-01-29

    申请号:US12843350

    申请日:2010-07-26

    Abstract: A semiconductor device is formed with low resistivity self aligned silicide contacts with high-K/metal gates. Embodiments include postponing silicidation of a metal layer on source/drain regions in a silicon substrate until deposition of a high-K dielectric, thereby preserving the physical and morphological properties of the silicide film and improving device performance. An embodiment includes forming a replaceable gate electrode on a silicon-containing substrate, forming source/drain regions, forming a metal layer on the source/drain regions, forming an ILD over the metal layer on the substrate, removing the replaceable gate electrode, thereby forming a cavity, depositing a high-K dielectric layer in the cavity at a temperature sufficient to initiate a silicidation reaction between the metal layer and underlying silicon, and forming a metal gate electrode on the high-K dielectric layer.

    Abstract translation: 半导体器件形成为具有高K /金属栅极的低电阻率自对准硅化物接触。 实施例包括在硅衬底的源极/漏极区域上延迟金属层的硅化物,直到沉积高K电介质,从而保持硅化物膜的物理和形态特性并提高器件性能。 一个实施例包括在含硅衬底上形成可替换的栅电极,形成源极/漏极区域,在源极/漏极区域上形成金属层,在衬底上的金属层上形成ILD,去除可更换的栅电极,由此 形成空腔,在足以在金属层和下层硅之间引发硅化反应的温度下在腔中沉积高K电介质层,以及在高K电介质层上形成金属栅电极。

    Self-aligned silicidation for replacement gate process
    2.
    发明授权
    Self-aligned silicidation for replacement gate process 有权
    用于替代浇口工艺的自对准硅化物

    公开(公告)号:US08779529B2

    公开(公告)日:2014-07-15

    申请号:US13692369

    申请日:2012-12-03

    Abstract: A semiconductor device is formed with low resistivity self aligned silicide contacts with high-K/metal gates. Embodiments include postponing silicidation of a metal layer on source/drain regions in a silicon substrate until deposition of a high-K dielectric, thereby preserving the physical and morphological properties of the silicide film and improving device performance. An embodiment includes forming a replaceable gate electrode on a silicon-containing substrate, forming source/drain regions, forming a metal layer on the source/drain regions, forming an ILD over the metal layer on the substrate, removing the replaceable gate electrode, thereby forming a cavity, depositing a high-K dielectric layer in the cavity at a temperature sufficient to initiate a silicidation reaction between the metal layer and underlying silicon, and forming a metal gate electrode on the high-K dielectric layer.

    Abstract translation: 半导体器件形成为具有高K /金属栅极的低电阻率自对准硅化物接触。 实施例包括在硅衬底的源极/漏极区域上延迟金属层的硅化物,直到沉积高K电介质,从而保持硅化物膜的物理和形态特性并提高器件性能。 一个实施例包括在含硅衬底上形成可替换的栅电极,形成源极/漏极区域,在源极/漏极区域上形成金属层,在衬底上的金属层上形成ILD,去除可更换的栅电极,由此 形成空腔,在足以在金属层和下层硅之间引发硅化反应的温度下在腔中沉积高K电介质层,以及在高K电介质层上形成金属栅电极。

    SELF-ALIGNED SILICIDATION FOR REPLACEMENT GATE PROCESS
    3.
    发明申请
    SELF-ALIGNED SILICIDATION FOR REPLACEMENT GATE PROCESS 有权
    用于替代浇注过程的自对准硅化物

    公开(公告)号:US20120018816A1

    公开(公告)日:2012-01-26

    申请号:US12843350

    申请日:2010-07-26

    Abstract: A semiconductor device is formed with low resistivity self aligned silicide contacts with high-K/metal gates. Embodiments include postponing silicidation of a metal layer on source/drain regions in a silicon substrate until deposition of a high-K dielectric, thereby preserving the physical and morphological properties of the silicide film and improving device performance. An embodiment includes forming a replaceable gate electrode on a silicon-containing substrate, forming source/drain regions, forming a metal layer on the source/drain regions, forming an ILD over the metal layer on the substrate, removing the replaceable gate electrode, thereby forming a cavity, depositing a high-K dielectric layer in the cavity at a temperature sufficient to initiate a silicidation reaction between the metal layer and underlying silicon, and forming a metal gate electrode on the high-K dielectric layer.

    Abstract translation: 半导体器件形成为具有高K /金属栅极的低电阻率自对准硅化物接触。 实施例包括在硅衬底的源极/漏极区域上延迟金属层的硅化物,直到沉积高K电介质,从而保持硅化物膜的物理和形态特性并提高器件性能。 一个实施例包括在含硅衬底上形成可替换的栅电极,形成源极/漏极区域,在源极/漏极区域上形成金属层,在衬底上的金属层上形成ILD,去除可更换的栅电极,由此 形成空腔,在足以在金属层和下层硅之间引发硅化反应的温度下在腔中沉积高K电介质层,以及在高K电介质层上形成金属栅电极。

    Semiconductor devices having stressor regions and related fabrication methods
    4.
    发明授权
    Semiconductor devices having stressor regions and related fabrication methods 有权
    具有应力区域和相关制造方法的半导体器件

    公开(公告)号:US08426278B2

    公开(公告)日:2013-04-23

    申请号:US12797420

    申请日:2010-06-09

    Abstract: Apparatus for semiconductor device structures and related fabrication methods are provided. A method for fabricating a semiconductor device structure on an isolated region of semiconductor material comprises forming a plurality of gate structures overlying the isolated region of semiconductor material and masking edge portions of the isolated region of semiconductor material. While the edge portions are masked, the fabrication method continues by forming recesses between gate structures of the plurality of gate structures and forming stressor regions in the recesses. The method continues by unmasking the edge portions and implanting ions of a conductivity-determining impurity type into the stressor regions and the edge portions.

    Abstract translation: 提供了半导体器件结构和相关制造方法的装置。 在半导体材料的隔离区域上制造半导体器件结构的方法包括形成覆盖半导体材料的隔离区域和掩蔽半导体材料的隔离区域的边缘部分的多个栅极结构。 当边缘部分被掩蔽时,制造方法通过在多个栅极结构的栅极结构之间形成凹槽并在凹部中形成应力区域来继续。 该方法继续通过揭开边缘部分并将导电性确定杂质类型的离子注入到应力区域和边缘部分中。

    Electronic device and method of biasing
    5.
    发明授权
    Electronic device and method of biasing 有权
    电子设备和偏置方法

    公开(公告)号:US08687417B2

    公开(公告)日:2014-04-01

    申请号:US11867743

    申请日:2007-10-05

    CPC classification number: H01L21/84 H01L27/1203

    Abstract: A first bias charge is provided to first bias region at a first level of an electronic device, the first bias region directly underlying a first transistor having a channel region at a second level that is electrically isolated from the first bias region. A voltage threshold of the first transistor is based upon the first bias charge. A second bias charge is provided to second bias region at the first level of an electronic device, the second bias region directly underlying a second transistor having a channel region at a second level that is electrically isolated from the first bias region. A voltage threshold of the second transistor is based upon the second bias charge.

    Abstract translation: 第一偏置电荷被提供给电子器件的第一电平处的第一偏置区域,直接位于第一晶体管下方的第一偏置区域具有与第一偏置区域电隔离的第二电平的沟道区域。 第一晶体管的电压阈值基于第一偏置电荷。 第二偏置电荷被提供给电子器件的第一电平处的第二偏置区域,第二偏置区域直接位于具有与第一偏置区域电隔离的第二电平的沟道区域的第二晶体管的正下方。 第二晶体管的电压阈值基于第二偏置电荷。

    COMPENSATING FOR LAYOUT DIMENSION EFFECTS IN SEMICONDUCTOR DEVICE MODELING
    6.
    发明申请
    COMPENSATING FOR LAYOUT DIMENSION EFFECTS IN SEMICONDUCTOR DEVICE MODELING 失效
    补偿半导体器件建模中的布局尺寸效应

    公开(公告)号:US20080104550A1

    公开(公告)日:2008-05-01

    申请号:US11537390

    申请日:2006-09-29

    CPC classification number: G06F17/5072

    Abstract: A method includes receiving design data associated with an integrated circuit device. The integrated circuit device includes a first element having a corner defined therein and a second element overlapping the first element. A dimension specified for the first element in the design data is adjusted based on a distance between the second element and the corner. The integrated circuit device is simulated based on the adjusted dimension.

    Abstract translation: 一种方法包括接收与集成电路装置相关联的设计数据。 集成电路装置包括具有限定在其中的角部的第一元件和与第一元件重叠的第二元件。 基于第二元件和拐角之间的距离来调整为设计数据中的第一元件指定的尺寸。 基于经调整的尺寸模拟集成电路器件。

    Method for improving MOS mobility
    7.
    发明授权
    Method for improving MOS mobility 有权
    提高MOS迁移率的方法

    公开(公告)号:US06921704B1

    公开(公告)日:2005-07-26

    申请号:US10700557

    申请日:2003-11-05

    Abstract: A method of forming a silicon-on-insulator semiconductor device including providing a substrate and forming a trench in the substrate, wherein the trench includes opposing side walls extending upwardly from a base of the trench. The method also includes depositing at least two insulating layers into the trench to form a shallow trench isolation structure, wherein an innermost of the insulating layers substantially conforms to the base and the two side walls of the trench and an outermost of the insulating layers spans the side walls of the trench so that a gap is formed between the insulating layers in the trench. The gap creates compressive forces within the shallow trench isolation structure, which in turn creates tensile stress within the surrounding substrate to enhance mobility of the device.

    Abstract translation: 一种形成绝缘体上半导体器件的方法,包括提供衬底并在衬底中形成沟槽,其中沟槽包括从沟槽的基底向上延伸的相对的侧壁。 该方法还包括将至少两个绝缘层沉积到沟槽中以形成浅沟槽隔离结构,其中绝缘层的最内层基本上与基底一致并且沟槽的两个侧壁和绝缘层的最外层横跨 沟槽的侧壁,使得在沟槽中的绝缘层之间形成间隙。 间隙在浅沟槽隔离结构内产生压缩力,这反过来在周围的衬底内产生拉伸应力,以增强器件的移动性。

    Maintaining LDD series resistance of MOS transistors by retarding dopant segregation
    8.
    发明授权
    Maintaining LDD series resistance of MOS transistors by retarding dopant segregation 失效
    通过延迟掺杂剂分离来维持MOS晶体管的LDD串联电阻

    公开(公告)号:US06777281B1

    公开(公告)日:2004-08-17

    申请号:US10214361

    申请日:2002-08-08

    Abstract: A method of manufacturing a semiconductor device, comprising steps of: (a) providing a semi conductor substrate including at least one dopant species-containing region extending to a surface of the substrate; (b) forming a thin liner oxide layer on the surface of the substrate; and (c) incorporating in the thin line oxide layer at least one species which substantially prevents, or at least reduces, segregation therein of the dopant species arising from movement thereinto from the at least one dopant species-containing region.

    Abstract translation: 一种制造半导体器件的方法,包括以下步骤:(a)提供半导体衬底,其包括至少一个延伸到衬底表面的含掺杂物种的区域;(b)在衬底的表面上形成薄的衬里氧化物层 基材; 和(c)在细线氧化物层中并入至少一种物质,其至少一种物质,其基本上防止或至少减少其中从至少一种含掺杂物种的区域移动而引起的掺杂物质的偏析。

    Formation of ultra-shallow depth source/drain extensions for MOS transistors
    9.
    发明授权
    Formation of ultra-shallow depth source/drain extensions for MOS transistors 有权
    形成MOS晶体管的超浅深度源极/漏极延伸

    公开(公告)号:US06727136B1

    公开(公告)日:2004-04-27

    申请号:US10273291

    申请日:2002-10-18

    Abstract: A method of manufacturing a semiconductor device, comprising sequential steps of: (a) providing a semiconductor substrate including a pre-selected thickness strained lattice layer of a first semiconductor material at an upper surface thereof and an underlying layer of a second semiconductor material; and (b) introducing a dopant-containing species of one conductivity type into at least one pre-selected portion of the strained lattice layer of first semiconductor material to form a dopant-containing region therein with a junction at a depth substantially equal to the pre-selected thickness, wherein the second semiconductor material of the underlying layer inhibits diffusion thereinto of the dopant-containing species from the strained lattice layer, thereby controlling/limiting the depth of the junction to substantially the pre-selected thickness of the strained lattice layer.

    Abstract translation: 一种制造半导体器件的方法,包括以下顺序的步骤:(a)提供半导体衬底,该半导体衬底在其上表面包括预先选定的第一半导体材料的应变晶格层和第二半导体材料的下层; 和(b)将含有一种导电类型的含掺杂剂的物质引入到第一半导体材料的应变晶格层的至少一个预先选择的部分中,以在其中形成含有掺杂剂的区域,其中接合部的深度基本上等于预先 - 选择的厚度,其中下层的第二半导体材料抑制来自应变晶格层的含掺杂剂物质的扩散,从而将结的深度控制/限制到基本上预应变晶格层的预选厚度。

    Reduced channel length lightly doped drain transistor using a
sub-amorphous large tilt angle implant to provide enhanced lateral
diffusion

    公开(公告)号:US5970353A

    公开(公告)日:1999-10-19

    申请号:US050730

    申请日:1998-03-30

    Applicant: Akif Sultan

    Inventor: Akif Sultan

    Abstract: A method of reducing an effective channel length of a lightly doped drain transistor (50), includes the steps of forming a gate electrode (52) and a gate oxide (54) over a semiconductor substrate (56) and implanting a drain region (58) of the substrate (56) with a sub-amorphous large tilt angle implant to thereby supply interstitials (62) at a location under the gate oxide (54). The method also includes forming a lightly doped drain extension region (66) in the drain region (58) of the substrate (56) and forming a drain (70) in the drain region (58) and forming a source extension region (67) and a source (72) in a source region (60) of the substrate (56). Lastly, the method includes thermally treating the substrate (56), wherein the interstitials (62) enhance a lateral diffusion (84) under the gate oxide (54) without substantially impacting a vertical diffusion (86) of the extension regions (66, 67), thereby reducing the effective channel length without an increase in a junction depth of the drain (70) and the drain extension region (66) or the source (72) and the source extension region (67).

Patent Agency Ranking