Abstract:
Ultra narrow and thin polycrystalline silicon gate electrodes are formed by patterning a polysilicon gate precursor, reducing its width and height by selectively oxidizing its upper and side surfaces, and then removing the oxidized surfaces. Embodiments include patterning the polysilicon gate precursor with an oxide layer thereunder, ion implanting to form deep source/drain regions, forming a nitride layer on the substrate surface on each side of the polysilicon gate precursor, thermally oxidizing the upper and side surfaces of the polysilicon gate precursor thereby consuming silicon, and then removing the oxidized upper and side surfaces leaving a polysilicon gate electrode with a reduced width and a reduced height. Subsequent processing includes forming shallow source/drain extensions, forming dielectric sidewall spacers on the polysilicon gate electrode and then forming metal silicide layers on the upper surface of the polysilicon gate electrode and over the source/drain regions.
Abstract:
A method of forming a silicon-on-insulator semiconductor device including providing a substrate and forming a trench in the substrate, wherein the trench includes opposing side walls extending upwardly from a base of the trench. The method also includes depositing at least two insulating layers into the trench to form a shallow trench isolation structure, wherein an innermost of the insulating layers substantially conforms to the base and the two side walls of the trench and an outermost of the insulating layers spans the side walls of the trench so that a gap is formed between the insulating layers in the trench. The gap creates compressive forces within the shallow trench isolation structure, which in turn creates tensile stress within the surrounding substrate to enhance mobility of the device.
Abstract:
The present invention enables the production of improved high-reliability, high-density semiconductor devices. The present invention provides the high-density semiconductor devices by decreasing the size of semiconductor device structures, such as gate channel lengths. Short-channel effects are prevented by the use of highly localized halo implant regions formed in the device channel. Highly localized halo implant regions are formed by a tilt pre-amorphization implant and a laser thermal anneal of the halo implant region.
Abstract:
Dopant deactivation of source/drain extensions during silicidation is reduced by forming deep source/drain regions using a disposable dummy gate as a mask, forming metal silicide layers on the deep source/drain regions, removing the dummy gate and then forming the source/drain extensions using laser thermal annealing. Embodiments include angular ion implantation, after removing the dummy gate, to form spaced apart pre-amorphized regions, ion implanting to form source/drain extension implants extending deeper into the substrate than the pre-amorphized regions, and then laser thermal annealing to activate the source/drain extensions having a higher impurity concentration at the main surface of the substrate than deeper into the substrate. Subsequent processing includes forming sidewall spacers, a gate dielectric layer and then the gate electrode.
Abstract:
A method of manufacturing a semiconductor device comprises steps of: (a) providing a semiconductor substrate comprising an upper, tensilely strained lattice semiconductor layer and a lower, unstressed semiconductor layer; and (b) forming at least one MOS transistor on or within the tensilely strained lattice semiconductor layer, wherein the forming comprises a step of regulating the drive current of the at least one MOS transistor by adjusting the thickness of the tensilely strained lattice semiconductor layer. Embodiments include CMOS devices formed in substrates including a strained Si layer lattice-matched to a graded composition Si—Ge layer, wherein the thickness of the strained Si layer of each of the PMOS and NMOS transistors is adjusted to provide each transistor type with maximum drive current.
Abstract:
A method of manufacturing a MOSFET semiconductor device includes forming a gate electrode over a substrate and a gate oxide between the gate electrode and the substrate. Inert dopants are then implanted within the substrate to form amorphized source/drain regions in the substrate extending to a first depth significantly greater than the intended junction depth. The amorphized source/drain regions are implanted with source/drain dopants such that the dopants extend into the substrate to a second depth less than the first depth, above and spaced apart from the end-of-range defect region created at the first depth by the amorphization process. Laser thermal annealing recrystallizes the amorphous regions, activates the source/drain regions and forms source/drain junctions. Because the recrystallization front velocity towards the substrate main surface is greater than the dopant atom velocity in the liquid substrate during laser thermal annealing, the junctions are not pushed down to the amorphous/crystalline silicon interface. Thus, end-of-range defects are located in a region below and spaced apart from the junctions, and the defects are not located in the activated source/drain regions. Junction leakage as a result of the end-of-range defects is thereby reduced.
Abstract:
A shallow trench isolation region formed in a layer of semiconductor material. The shallow trench isolation region includes a trench formed in the layer of semiconductor material, the trench being defined by sidewalls and a bottom; a liner within the trench formed from a high-K material, the liner conforming to the sidewalls and bottom of the trench; and a fill section made from isolating material, and disposed within and conforming to the high-K liner. A method of forming the shallow trench isolation region is also disclosed.
Abstract:
A MOSFET and method of fabrication. The MOSFET includes a metal containing source and a metal containing drain; a semiconductor body having a thickness of less than about 15 nm disposed between the source and the drain and on top of an insulating layer, the insulating layer formed on a substrate; a gate electrode disposed over the body and defining a channel interposed between the source and the drain; and a gate dielectric made from a high-K material and separating the gate electrode and the body.
Abstract:
An ultra-large-scale integrated (ULSI) circuit includes MOSFETs which have different threshold voltages and yet have the same channel characteristics. The MOSFETs are provided on an SOI substrate. The thickness of a thin film on the substrate is varied to adjust the threshold voltage. The threshold voltage can be varied by roughly 240 mV. The thickness of the thin film can be adjusted through a LOCOS process.
Abstract:
A method of manufacturing a semiconductor device includes providing a strained-silicon semiconductor layer over a silicon germanium layer, and partially removing a first portion of the strained-silicon layer. The strained-silicon layer includes the first portion and a second portion, and a thickness of the second portion is greater than a thickness of the first portion. Initially, the first and second portions of the strained-silicon layer initially can have the same thickness. A p-channel transistor is formed over the first portion, and a n-channel transistor is formed over the second portion. A semiconductor device is also disclosed.