摘要:
A porous discriminating layer is formed on a ceramic support having at least one porous wall by (a) establishing a flow of a gas stream containing highly porous particles through the support to deposit a layer of the highly porous particles of a ceramic or ceramic precursor onto wall(s) of the support and (b) calcining said deposited layer to form the discriminating layer. This method is an inexpensive and effective route to forming a discriminating layer onto the porous wall.
摘要:
A porous discriminating layer is formed on a ceramic support having at least one porous wall by (a) establishing a flow of a gas stream containing highly porous particles through the support to deposit a layer of the highly porous particles of a ceramic or ceramic precursor onto wall(s) of the support and (b) calcining said deposited layer to form the discriminating layer. This method is an inexpensive and effective route to forming a discriminating layer onto the porous wall.
摘要:
A porous discriminating layer is formed on a ceramic support having at least one porous wall by (a) establishing a flow of a gas stream containing agglomerates of particles and (b) calcining said deposited layer to form the discriminating layer. At least a portion of the particles are of a sinter-resistant material or a sinter-resistant material precursor. The particles have a size from 0.01 to 5 microns and the agglomerates have a size of from 10 to 200 microns. This method is an inexpensive and effective route to forming a discriminating layer onto the porous wall.
摘要:
A skin is applied to a ceramic honeycomb. The skin is formed by applying a skin-forming composition and drying it. The skin-forming composition includes a carrier liquid, colloidal silica and/or colloidal alumina, and an inorganic filler. The filler includes an inorganic fiber. The filler may contain low aspect ratio particles that have the same or nearly the same CTE as the inorganic fiber. The filler may include a small proportion of a low aspect ratio filler particle that has a different CTE than the inorganic fiber.
摘要:
A ceramic honeycomb structure comprised of at least two separate smaller ceramic honeycombs that have been adhered together by a cement comprised of inorganic fibers and a binding phase wherein the smaller honey-combs and fibers are bonded together by the binding phase which is comprised of an silicate, aluminate or alumino-silicate. The fibers have a multi-modal size distribution in which some fibers have lengths of up to 1000 micons and other fibers have lengths in excess of 1 mm. The cement composition may be made in the absence of other inorganic and organic additives while achieving a shear thinning cement, for example, by mixing oppositely charged inorganic binders in water together so as to make a useful cement composition for applying to the smaller honeycombs to be cemented.
摘要:
A porous discriminating layer is formed on a ceramic support having at least one porous wall by (a) establishing a flow of a gas stream containing agglomerates of particles and (b) calcining said deposited layer to form the discriminating layer. At least a portion of the particles are of a sinter-resistant material or a sinter-resistant material precursor. The particles have a size from 0.01 to 5 microns and the agglomerates have a size of from 10 to 200 microns. This method is an inexpensive and effective route to forming a discriminating layer onto the porous wall.
摘要:
A skin is applied to a ceramic honeycomb. The skin is formed by applying a skin-forming composition and drying it. The skin-forming composition includes a carrier liquid, colloidal silica and/or colloidal alumina, and an inorganic filler. The filler includes an inorganic fiber. The filler may contain low aspect ratio particles that have the same or nearly the same CTE as the inorganic fiber. The filler may include a small proportion of a low aspect ratio filler particle that has a different CTE than the inorganic fiber.
摘要:
A ceramic honeycomb structure comprised of at least two separate smaller ceramic honeycombs that have been adhered together by a cement comprised of inorganic fibers and a binding phase wherein the smaller honey-combs and fibers are bonded together by the binding phase which is comprised of an silicate, aluminate or alumino-silicate. The fibers have a multi-modal size distribution in which some fibers have lengths of up to 1000 micons and other fibers have lengths in excess of 1 mm. The cement composition may be made in the absence of other inorganic and organic additives while achieving a shear thinning cement, for example, by mixing oppositely charged inorganic binders in water together so as to make a useful cement composition for applying to the smaller honeycombs to be cemented.
摘要:
A fuel injector is provided and includes a member defining a flowpath through which a first fluid flows, the flowpath having a cross-section with transverse elongate and short axes, a head defining a plenum storing a supply of a second fluid and a system fluidly coupled to the flowpath and the plenum to inject the second fluid from the plenum and into the flowpath at first and second locations along the elongate axis. The injected second fluid is formed into jets at the first and second locations, the first fluid entrains the jets such that the injected second fluid flows through the flowpath and mixes with the first fluid, and the short axis has a sufficient dimension such that the jets remain spaced from a sidewall of the member.
摘要:
A system and method for detecting an anode pressure sensor failure in a fuel cell system. The system and method include a controller that sets an initial minimum anode pressure sensor value and an initial maximum anode pressure sensor value. The controller determines a desired time interval for sampling anode pressure measurements and determines a total number of samples of anode pressure measurements to be collected by the controller from an anode pressure sensor. The controller also compares a pressure difference between the initial or a measured minimum anode pressure and the initial or a measured maximum anode pressure to a predetermined pressure difference threshold and sets a pressure sensor fault if the pressure difference between the initial or measured minimum anode pressure and the initial or maximum anode pressure is less than the predetermined pressure difference threshold.