摘要:
A biomaterial for the treatment of spinal cord or of peripheral nerve injury, obtainable by: a) treating a hyaluronic acid derivative with a coating solution promoting Neuronal Stem Cells adhesion, branching and differentiation; b) contacting isolated Neuronal Stem Cells with the hyaluronic acid derivative obtained from step a) and culturing and expanding the absorbed cells in the presence of growth or neurotrophic factors selected from βFGF (basic fibroblast growth factor), CNTF (ciliary neurotrophic factor), BDNF (brain derived neurotrophic factor) and GDNF (glial derived neurotrophic factor) or mixtures thereof.
摘要:
There is described a group of novel self-assembling peptides (SAPs), comprising biotinylated and unbiotinylated sequences, hybrid peptide-peptoid sequences, branched sequences for a total of 48 tested motifs, showing a heterogeneous ensemble of spontaneously self-assembled structures at the nano- and microscale, ranging from short tabular fibers to twisted ribbons, nanotubes and hierarchical self-assembled micrometer-long sheets. Specifically, the SAPs according to the present invention which initially spontaneous assemble, surprisingly form stable solid scaffolds upon exposure to neutral pH buffer. Further these SAPs allow adhesion, proliferation and differentiation of murine and human neural stem cells and have self-healing propensity. They also did not exert toxic effects in the central nervous system, can stop bleeding and foster nervous regeneration. Therefore, the SAPs according to the present invention are improved biomaterials, a highly valid and useful alternative which may replace the known SAPs, thus overcoming the disadvantages related thereto.
摘要:
There is described a group of novel self-assembling peptides (SAPs), comprising biotinylated and unbiotinylated sequences, hybrid peptide-peptoid sequences, branched sequences for a total of 48 tested motifs, showing a heterogeneous ensemble of spontaneously self-assembled structures at the nano- and microscale, ranging from short tabular fibers to twisted ribbons, nanotubes and hierarchical self-assembled micrometer-long sheets. Specifically, the SAPs according to the present invention which initially spontaneous assemble, surprisingly form stable solid scaffolds upon exposure to neutral pH buffer. Further these SAPs allow adhesion, proliferation and differentiation of murine and human neural stem cells and have self-healing propensity. They also did not exert toxic effects in the central nervous system, can stop bleeding and foster nervous regeneration. Therefore, the SAPs according to the present invention are improved biomaterials, a highly valid and useful alternative which may replace the known SAPs, thus overcoming the disadvantages related thereto.
摘要:
The present invention provides a self-assembling peptide comprising: (a) a first amino acid domain that mediates self-assembly, wherein the domain comprises alternating hydrophobic and hydrophilic amino acids that are complementary and structurally compatible and self-assemble into a macroscopic structure when present in unmodified form; and (b) a second amino acid domain that does not mediate self-assembly in isolated form, wherein the second amino acid domain comprises at least one minimal biologically active sequence. Such self-assembling peptides are described herein as “modified self-assemblingpeptides.” The present invention also provides pharmaceutical compositions, kits and matrices comprising a modified self-assembling peptide, and methods of using and making such compositions, kits and matrices.
摘要:
Functionalized self-assembling peptides suitable for obtaining hydrogels for use in a wide range of applications in the biomedical field, such as for the development of biomaterials for regenerative medicine and basic science research are described.
摘要:
The present invention concerns the field of functionalized self-assembling peptides suitable for obtaining hydrogels for use in a wide range of applications in the biomedical field, such as for the development of biomaterials for regenerative medicine and basic science research.
摘要:
The present invention provides a self-assembling peptide comprising: (a) a first amino acid domain that mediates self-assembly, wherein the domain comprises alternating hydrophobic and hydrophilic amino acids that are complementary and structurally compatible and self-assemble into a macroscopic structure when present in unmodified form; and (b) a second amino acid domain that does not mediate self-assembly in isolated form, wherein the second amino acid domain comprises at least one minimal biologically active sequence. Such self-assembling peptides are described herein as “modified self-assembling peptides.” The present invention also provides pharmaceutical compositions, kits and matrices comprising a modified self-assembling peptide, and methods of using and making such compositions, kits and matrices.