摘要:
A cell sheet for transplantation into a living body, containing MSCs having an average cell density of 3.0×104 cells/cm2 or less on the surface of the sheet is provided. A method for producing a cell sheet for transplantation into a living body, including: a step of seeding MSCs on a cell culture carrier having a three-dimensional structure formed of fibers at a cell number of 3.0×105 cells/cm2 or less; and a step of culturing the MSCs and thereby preparing a cell sheet containing the MSCs having an average cell density of 3.0×104 cells/cm2 or less is also provided.
摘要:
The present disclosure provides fasciculated nerve grafts of customizable lengths and diameters, and methods of preparing the same. The grafts are made by digesting native extracellular matrix (ECM) around the nerve fascicles of a nerve tissue, and the epineurial sheath. One or more of the individual fascicles may then be entubulated in an entubulation material, embedded in or coated with a coating material, or both, to form a fasciculated nerve graft. The fasciculated nerve grafts are customizable and designed to bridge nerve gaps; the modularity of the fasciculated nerve graft allows for restoring continuity to nerve defects of virtually any length and allows for matching the diameter of the patient's recipient nerve.
摘要:
A nerve conduit loaded with adipose-derived stem cells and a preparation method thereof are provided. The preparation method includes: S1, adding polycaprolactone and polyvinylpyrrolidone into a binary organic solvent, performing ultrasonic treatment, and then adding reduced graphene oxide nanoparticles to obtain a spinning solution; S2, electrospinning with the spinning solution and then washing for several times to obtain a semi-finished conduit product; and S3, injecting a cell mixture into the semi-finished conduit product to obtain the nerve conduit. A fiber surface of the nerve conduit has groove structures, and thus a specific surface area and cell adhesion sites are increased, and adhesion and proliferation of cells are facilitated. By loading the adipose-derived stem cells, neurotrophic phenotypic effect of peripheral nerve scaffold is improved, and can effectively avoid immunological rejection of transplantation, promote orientational growth of axons into the nerve conduit and promote myelination effect of Schwann cells.
摘要:
An electrically conductive hyaluronic acid-based hydrogel is disclosed that is a crosslinked porous scaffold having a graphene-based material encapsulated or in contact within the porous scaffold. The graphene-based material includes one or more of graphene oxide foam, reduced graphene oxide foam, nanoplatelets, nanoparticles, or fibers. The porous scaffold may be formed over an implanted bioelectronic device such as a microelectrode array having a plurality of electrodes. The porous scaffold may also be used to control the differentiation of cells including Neural Stem/Progenitor Cells (NS/PCs).
摘要:
Described herein are tissue grafts derived from the placenta that possess good adhesion to biological tissues and are useful in would healing applications. In one aspect, the tissue graft includes (1) two or more layers of amnion, wherein at least one layer of amnion is cross-linked, (2) two or more layers of chorion, wherein at least one layer of amnion is cross-linked, or (3) one or more layers of amnion and chorion, wherein at least one layer of amnion and/or chorion is cross-linked. In another aspect, the grafts are composed of amnion and chorion cross-linked with one another. In a further aspect, the grafts have one or more layers sandwiched between the amnion and chorion membranes. The amnion and/or the chorion are treated with a cross-linking agent prior to the formation of the graft. The presence of the cross-linking agent present on the graft also enhances adhesion to the biological tissue of interest. Also described herein are methods for making and using the tissue grafts.
摘要:
An extracellular matrix-modified decellularized nerve scaffold and use thereof are provided. The extracellular matrix-modified decellularized nerve scaffold is prepared from a natural porcine optic nerve. The scaffold has a plurality of longitudinal channels and a plurality of transversal foramina intercommunicated with the longitudinal channels, which have relatively uniform diameters and relatively even distributions in the scaffold. The extracellular matrix-modified decellularized optic nerve scaffold of the present invention changes the poor microenvironment of existing decellularized material that lacks cell growth factors and nutrients, supports seeded cells to form neural networks in vitro or in vivo, and enables the connection of ascending nerve fibers or descending nerve fibers of the injured spinal cord to their target cells after transplantation.
摘要:
The present invention is directed to the compositions and methods of preparing hydrogel-grafted nerve guides for peripheral nerve regeneration. Particularly, the present invention describes the nerve guides and methods for preparation of hydrogel-grafted nerve guides with encapsulated neurotrophic factors and a nanofiber mesh lining the inner surface of the guide. The present invention also provides methods for peripheral nerve repair using these hydrogel-grafted nerve guides.
摘要:
Methods for treating a patient having a disease or condition related to IVD degeneration are provided. The methods comprise administering cells obtained from human umbilical cord tissue, or administering pharmaceutical compositions comprising such cells or prepared from such cells and optionally a hydrogel. In some embodiments, administering the cells promotes repair and regeneration of degenerated IVD tissue in the patient. Pharmaceutical compositions for use in the inventive methods, as well as kits for practicing the methods are also provided.
摘要:
Described herein are novel compositions comprising multimodal TRAIL agents and cells engineered to express such multimodal TRAIL agents, including cells encapsulated in a scaffold or matrix, for use in the treatment of disorders such as cancer.
摘要:
The invention relates to a cell sheet construct for neurovascular reconstruction. The cell sheet construct has a vascular endothelial cell layer and a neural stem cell layer, and the two layers are physically in direct contact with each other, where the vascular endothelial cell layer forms branching vasculatures, and the neural stem cell layer differentiates into neurons. The invention also relates to a method for manufacturing the cell sheet construct, having the following steps: culturing vascular endothelial cells on a substrate to form a vascular endothelial cell layer, seeding neural stem cells on the vascular endothelial cell layer to make the neural stem cells be physically in direct contact with the vascular endothelial cell layer, and culturing the neural stem cells and the vascular endothelial cell layer to differentiate into neurons and branching vasculatures to form a cell sheet construct.