Abstract:
The present invention relates to methods for modifying a cellulosic textile material comprising treating the cellulosic textile material with a composition comprising a xyloglucan endotransglycosylase and (a) a polymeric xyloglucan and a functionalized xyloglucan oligomer comprising a chemical group; (b) a polymeric xyloglucan functionalized with a chemical group and a functionalized xyloglucan oligomer comprising a chemical group; (c) a polymeric xyloglucan functionalized with a chemical group and a xyloglucan oligomer; (d) a polymeric xyloglucan functionalized with a chemical group; or (e) a functionalized xyloglucan oligomer comprising a chemical group, under conditions leading to a modified cellulosic textile material where the modified cellulosic textile material possesses a textile improvement compared to the unmodified cellulosic textile material. The present invention also relates to modified cellulosic textile materials with a textile improvement.
Abstract:
The present invention relates to methods for modifying an agricultural crop comprising treating the agricultural crop with a composition comprising a xyloglucan endotransglycosylase and (a) a polymeric xyloglucan and a functionalized xyloglucan oligomer comprising a chemical group; (b) a polymeric xyloglucan functionalized with a chemical group and a functionalized xyloglucan oligomer comprising a chemical group; (c) a polymeric xyloglucan functionalized with a chemical group and a xyloglucan ligomer; (d) a polymeric xyloglucan, and a xyloglucan oligomer; (e) a polymeric xyloglucan functionalized with a chemical group; (f) a polymeric xyloglucan; (g) a functionalized xyloglucan oligomer comprising a chemical group; or (h) a xyloglucan oligomer, or (a-h) without a xyloglucan endotransglycosylase, in a medium under conditions leading to a modified agricultural crop possessing an improved property compared to the unmodified agricultural crop. The present invention also relates to a modified agricultural crop obtained by such methods.
Abstract:
The present invention provides derivatives of native lignin having an ethoxy content of 0.45 mmol/g or greater. Surprisingly, it has been found that phenolic resins comprising derivatives of native lignin having ethoxy contents have acceptable performance characteristics such as bondstrength.
Abstract:
The present invention provides derivatives of native lignin having an ethoxy content of 0.45 mmol/g or greater. Surprisingly, it has been found that phenolic resins comprising derivatives of native lignin having ethoxy contents have acceptable performance characteristics such as bondstrength.
Abstract:
The present invention relates to methods for modifying an agricultural crop comprising treating the agricultural crop with a composition comprising a xyloglucan endotransglycosylase and (a) a polymeric xyloglucan and a functionalized xyloglucan oligomer comprising a chemical group; (b) a polymeric xyloglucan functionalized with a chemical group and a functionalized xyloglucan oligomer comprising a chemical group; (c) a polymeric xyloglucan functionalized with a chemical group and a xyloglucan oligomer; (d) a polymeric xyloglucan, and a xyloglucan oligomer; (e) a polymeric xyloglucan functionalized with a chemical group; (f) a polymeric xyloglucan; (g) a functionalized xyloglucan oligomer comprising a chemical group; or (h) a xyloglucan oligomer, or (a-h) without a xyloglucan endotransglycosylase, in a medium under conditions leading to a modified agricultural crop possessing an improved property compared to the unmodified agricultural crop. The present invention also relates to a modified agricultural crop obtained by such methods.
Abstract:
The present invention relates to methods for modifying an agricultural crop comprising treating the agricultural crop with a composition comprising a xyloglucan endotransglycosylase and (a) a polymeric xyloglucan and a functionalized xyloglucan oligomer comprising a chemical group; (b) a polymeric xyloglucan functionalized with a chemical group and a functionalized xyloglucan oligomer comprising a chemical group; (c) a polymeric xyloglucan functionalized with a chemical group and a xyloglucan oligomer; (d) a polymeric xyloglucan, and a xyloglucan oligomer; (e) a polymeric xyloglucan functionalized with a chemical group; (f) a polymeric xyloglucan; (g) a functionalized xyloglucan oligomer comprising a chemical group; or (h) a xyloglucan oligomer, or (a-h) without a xyloglucan endotransglycosylase, in a medium under conditions leading to a modified agricultural crop possessing an improved property compared to the unmodified agricultural crop. The present invention also relates to a modified agricultural crop obtained by such methods.
Abstract:
The present invention relates to processes for modifying a filler material comprising treating the filler material with a composition comprising a xyloglucan endotransglycosylase and (a) a polymeric xyloglucan and a functionalized xyloglucan oligomer comprising a chemical group; (b) a polymeric xyloglucan functionalized with a chemical group and a functionalized xyloglucan oligomer comprising a chemical group; (c) a polymeric xyloglucan functionalized with a chemical group and a xyloglucan oligomer; (d) a polymeric xyloglucan and a xyloglucan oligomer; (e) a a polymeric xyloglucan functionalized with a chemical group; (f) a polymeric xyloglucan; (g) a functionalized xyloglucan oligomer comprising a chemical group; or (h) a xyloglucan oligomer; or a composition of (a-h) without a xyloglucan endotransglycosylase, wherein the modified filler material possesses an improved property compared to the unmodified filler material. The present invention also relates to modified filler materials and modified filler materials obtained by such processes.
Abstract:
The invention relates to methods for functionalizing a material, linking materials, or producing a composite material with compositions comprising (a) a xyloglucan endotransglycosylase, a polymeric xyloglucan, and a functionalized xyloglucan oligomer; (b) a xyloglucan endotransglycosylase, a polymeric xyloglucan functionalized with a chemical group, and a functionalized xyloglucan oligomer; (c) a xyloglucan endotransglycosylase, a polymeric xyloglucan functionalized with a chemical group, and a xyloglucan oligomer; (d) a xyloglucan endotransglycosylase, a polymeric xyloglucan, and a xyloglucan oligomer; (e) a xyloglucan endotransglycosylase and a polymeric xyloglucan functionalized with a chemical group; (f) a xyloglucan endotransglycosylase and a polymeric xyloglucan; (g) a xyloglucan endotransglycosylase and a functionalized xyloglucan oligomer; (h) a xyloglucan endotransglycosylase and a xyloglucan oligomer, or (i) a composition of (a), (b), (c), (d), (e), (f), (g), or (h) without a xyloglucan endotransglycosylase. The invention also relates to a material obtained by such methods.
Abstract:
The present invention relates to methods for modifying a non-cellulosic textile material comprising treating the non-cellulosic textile material with a composition comprising a xyloglucan endotransglycosylase and (a) a polymeric xyloglucan and a functionalized xyloglucan oligomer comprising a chemical group; (b) a polymeric xyloglucan functionalized with a chemical group and a functionalized xyloglucan oligomer comprising a chemical group; (c) a polymeric xyloglucan functionalized with a chemical group and a xyloglucan oligomer; (d) a polymeric xyloglucan and a xyloglucan oligomer; (e) a polymeric xyloglucan functionalized with a chemical group; (f) a polymeric xyloglucan; (g) a functionalized xyloglucan oligomer comprising a chemical group; or (h) a xyloglucan oligomer, under conditions leading to a modified non-cellulosic textile material, where the modified non-cellulosic textile material possesses a textile improvement compared to the unmodified non-cellulosic textile material. The present invention also relates to modified non-cellulosic textile materials with a textile improvement.
Abstract:
A modular process for organosolv fractionation of lignocellulosic feedstocks into component parts and further processing of said component parts into at least fuel-grade ethanol and four classes of lignin derivatives. The modular process includes a first processing module configured for physico-chemically digesting lignocellulosic feedstocks with an organic solvent thereby producing a cellulosic solids fraction and a liquid fraction, a second processing module configured for producing at least a fuel-grade ethanol and a first class of novel lignin derivatives from the cellulosic solids fraction, a third processing module configured for separating a second class and a third class of lignin derivatives from the liquid fraction and further processing the liquid fraction to produce a distillate and a stillage, a fourth processing module configured for separating a fourth class of lignin derivatives from the stillage and further processing the stillage to produce a sugar syrup.