Abstract:
The invention relates to devices and methods for detecting a ligand in a liquid, based on deflection of one or more microscopic cantilevers. Each cantilever has an optical waveguide fixed thereto or integral therewith. Deflection of the cantilever is detected by assessing coupling of light between the optical waveguide on the cantilever and an optical waveguide fixed distally thereto.
Abstract:
A device structure is defined in a single-crystal silicon (SCS) layer separated by an insulator layer, such as an oxide layer, from a handle wafer. The SCS can be attached to the insulator by wafer bonding, and is selectively etched, as by photolithographic patterning and dry etching. A sacrificial oxide layer can be deposited on the etched SCS, on which polysilicon can be deposited. A protective oxide layer is deposited, and CMOS circuitry and sensors are integrated. Silicon microstructures with sensors connected to CMOS circuitry are released. In addition, holes can be etched through the sacrificial oxide layer, sacrificial oxide can be deposited on the etched SCS, polysilicon can be deposited on the sacrificial oxide, PSG can be deposited on the polysilicon layer, which both can then be patterned.
Abstract:
A portable waveguide sensor having one or more gratings. In one embodiment, the sensor has a waveguide, wherein a plurality of grooves imprinted onto the waveguide form a Bragg grating. The surface of the grooves has a functional layer adapted to bind a substance of interest, e.g., a biological pathogen. When the pathogen binds to the functional layer, the binding shifts the spectral reflection band corresponding to the Bragg grating such that a probe light previously reflected by the grating now passes through the grating, thereby indicating the presence of the pathogen. In another embodiment, the sensor has a Mach-Zehnder interferometer (MZI), one arm of which has a resonator formed by two Bragg gratings. The surface of the resonator between the gratings has a functional layer whereas the Bragg gratings themselves do not have such a layer.
Abstract:
An integrated piezo-resistive sensor for determining mirror position in an optical switch. One or more piezo-resistive layers may be formed in silicon springs supporting a movable mirror in the switch. Change in resistivity of those layers due to spring deformation during mirror motion is measured and related to the mirror deflection angle. Information about the angle may be used to provide feedback to the motion actuator, which then may be operated to orient the mirror more accurately. A sensor's sensitivity may be increased by appropriately orienting the springs with respect to the crystallographic axes of the silicon.
Abstract:
A III-V compound light emitter is integrated with Si-based actuators. The Proposed devices take advantage of the superior optical properties of III-V compounds and the superior mechanical properties of Si, as well as mature fabrication technologies of Si-Micro-Electro-Mechanical Systems (MEMS). The emitter can be a light emitting diode (LED), a vertical cavity surface emitting laser (VCSEL) or an edge emitting laser. Electro or magnetic based actuation from Si-based actuators provides linear or angular movement of the light emitter.
Abstract:
The present invention provides a micromechanical or microoptomechanical structure. The structure is produced by a process comprising defining a structure on a single crystal silicon layer separated by an insulator layer from a substrate layer; depositing and etching a polysilicon layer on the single crystal silicon layer, with remaining polysilcon forming mechanical or optical elements of the structure; exposing a selected area of the single crystal silicon layer; and releasing the formed structure.
Abstract:
A microoptomechanical structure produced by defining a microoptical structure in a single-crystal silicon layer separated by an insulator layer from a handle wafer, such as a SOI wafer, selectively etching the single crystal silicon layer, depositing a sacrificial oxide layer on the etched single crystal silicon layer, depositing and etching a polysilicon layer on the sacrificial oxide layer, with remaining polysilcon forming hinge elements, and releasing formed microoptical structures. Embodiments use an oxide as an insulator, and other embodiments provide for wafer bonding of the silicon layer to the insulator layer.
Abstract:
A microelectromechanically tunable Fabry-Perot spectrophotometer is provided for color sensing. Optical fiber provides light input to a Fabry-Perot filter which is adjusted by a switched capacitor circuit. Spectral intensity is sensed by an integrated photodetector.
Abstract:
The invention relates to devices and methods for detecting a ligand in a liquid, based on deflection of one or more microscopic cantilevers. Each cantilever has an optical waveguide fixed thereto or integral therewith. Deflection of the cantilever is detected by assessing coupling of light between the optical waveguide on the cantilever and an optical waveguide fixed distally thereto.
Abstract:
The present invention provides a micromechanical or microoptomechanical structure. The structure is produced by a process comprising defining a structure on a single crystal silicon layer separated by an insulator layer from a substrate layer; depositing and etching a polysilicon layer on the single crystal silicon layer, with remaining polysilicon forming mechanical or optical elements of the structure; exposing a selected area of the single crystal silicon layer; and releasing the formed structure.