摘要:
A semiconductor structure and method of manufacturing a semiconductor device, and more particularly, an NFET device. The devices includes a stress receiving layer provided over a stress inducing layer with a material at an interface there between which reduces the occurrence and propagation of misfit dislocations in the structure. The stress receiving layer is silicon (Si), the stress inducing layer is silicon-germanium (SiGe) and the material is carbon which is provided by doping the layers during formation of the device. The carbon can be doped throughout the whole of the SiGe layer also.
摘要:
The present invention relates to high performance n-channel field effect transistors (n-FETs) that each contains a strained semiconductor channel, and methods for forming such n-FETs by using buried pseudomorphic layers that contain pseudomorphically generated compressive strain.
摘要:
A semiconductor structure and method of manufacturing and more particularly a CMOS device with a stress inducing material embedded in both gates and also in the source/drain region of the PFET. The PFET region and the NFET region having a different sized gate to vary the device performance of the NFET and the PFET.
摘要:
The invention relates to a semiconductor structure and method of manufacturing and more particularly to a CMOS device with a stress inducing material embedded in both gates and also in the source/drain of the PFET and varying thickness of the PFET and NFET channel. In one embodiment, the structure enhances the device performance by varying the thickness of the top Silicon layer respective to the NFET or the PFET.
摘要:
The invention relates to a semiconductor structure and method of manufacturing and more particularly to a CMOS device with a stress inducing material embedded in both gates and also in the source/drain region of the PFET and varying thickness of the PFET and NFET channel. In one embodiment, the structure enhances the device performance by varying the thickness of the top Silicon layer respective to the NFET or the PFET.
摘要:
The invention relates to a semiconductor structure and method of manufacturing and more particularly to a CMOS device with a stress inducing material embedded in both gates and also in the source/drain region of the PFET and varying thickness of the PFET and NFET channel. In one embodiment, the structure enhances the device performance by varying the thickness of the top Silicon layer respective to the NFET or the PFET.
摘要:
Impact on parametric performance of physical design choices for transistors is scored for on-current and off-current of the transistors. The impact of the design parameters are incorporated into parameters that measure predicted shift in mean on-current and mean off-current and parameters that measure predicted increase in deviations in the distribution of on-current and the off-current. Statistics may be taken at a cell level, a block level, or a chip level to optimize a chip design in a design phase, or to predict changes in parametric yield during manufacturing or after a depressed parametric yield is observed. Further, parametric yield and current level may be predicted region by region and compared with observed thermal emission to pinpoint any anomaly region in a chip to facilitate detection and correction in any mistakes in chip design.
摘要:
Impact on parametric performance of physical design choices for transistors is scored for on-current and off-current of the transistors. The impact of the design parameters are incorporated into parameters that measure predicted shift in mean on-current and mean off-current and parameters that measure predicted increase in deviations in the distribution of on-current and the off-current. Statistics may be taken at a cell level, a block level, or a chip level to optimize a chip design in a design phase, or to predict changes in parametric yield during manufacturing or after a depressed parametric yield is observed. Further, parametric yield and current level may be predicted region by region and compared with observed thermal emission to pinpoint any anomaly region in a chip to facilitate detection and correction in any mistakes in chip design.
摘要:
A strained Fin Field Effect Transistor (FinFET) (and method for forming the same) includes a relaxed first material having a sidewall, and a strained second material formed on the sidewall of the first material. The relaxed first material and the strained second material form a fin of the FinFET.
摘要:
Impact on parametric performance of physical design choices for transistors is scored for on-current and off-current of the transistors. The impact of the design parameters are incorporated into parameters that measure predicted shift in mean on-current and mean off-current and parameters that measure predicted increase in deviations in the distribution of on-current and the off-current. Statistics may be taken at a cell level, a block level, or a chip level to optimize a chip design in a design phase, or to predict changes in parametric yield during manufacturing or after a depressed parametric yield is observed. Further, parametric yield and current level may be predicted region by region and compared with observed thermal emission to pinpoint any anomaly region in a chip to facilitate detection and correction in any mistakes in chip design.