Abstract:
A tire pre-conditioning system includes a first mandrel, a second mandrel spaced apart from the first mandrel, and a controller in communication with the first mandrel and the second mandrel. The first mandrel is fixedly attached to a first shaft and including a first tapered sidewall. The second mandrel is fixedly attached to a second shaft and including a second tapered sidewall. The controller is operable to axially move the first mandrel and the second mandrel toward one another until the first and second tapered sidewalls are opposing respective beads of a tire, and supply pressurized fluid into an internal cavity of the tire to inflate the tire. The inflating causing the beads to move relative to mandrels while contacting the opposing respective tapered sidewalls to burnish the beads of the tire.
Abstract:
A wheel inflation apparatus including a wheel engagement unit that suspends a tire/wheel assembly and at least one inflation unit coupled to the robotic arm, each inflation unit being configured to inflate the tire/wheel assembly. A load measuring unit is configured to sense an amount of load being applied to the wheel/tire assembly. A controller is coupled to the load measuring unit for receiving a load signal and determining an internal air pressure of the tire/wheel assembly based on the load signal. The controller controls the at least one inflation unit based on the determined internal air pressure and a target (desired) air pressure value.
Abstract:
A system for preparing an interior surface of a tire for an adhesive includes a turntable configured to remove a layer of material from the tire, and a manipulator operable to move and rotate the tire. The turntable includes a platform rotatable about a first axis. An ablation module is disposed within the platform and includes one or more lasers each configured to emit a laser beam for removing the layer of material from the tire. A plurality of guide rollers extend from the platform and are operable between a retracted position and an extended position to selectively secure the tire to the platform. An exhaust system is disposed adjacent to the one or more lasers.
Abstract:
An apparatus for processing a tire and a wheel for forming a tire wheel assembly is disclosed. The apparatus includes a tire support member including a first tire support member, a second tire support member and a third tire support member. Each of the first, second and third tire support members include an upper surface and a lower surface. The apparatus includes a plurality of tire engaging devices including a first tire tread engaging post and a second tire tread engaging post. A method for processing a tire and a wheel for forming a tire wheel assembly is also disclosed.
Abstract:
A method for installing a sensor onto an inner surface of a tire is generally disclosed. The method includes robotically deglazing at least a portion of the inner surface of the tire, defining a preconditioned surface. The sensor is robotically selected and a target surface of the sensor is cleaned. An adhesive is applied to at least a portion of the target surface of the sensor. In some embodiments, the adhesive is applied to a portion of the preconditioned surface. The sensor is robotically positioned, wherein the target surface of the sensor abuts the preconditioned surface. A wet-out operation is performed, wherein a predetermined pressure is applied to the sensor for a predetermined period of time to affix the sensor to the preconditioned surface.
Abstract:
A balancing device, a uniformity device and an apparatus including the balancing device and the uniformity device are disclosed. Each of the balancing device and the uniformity device includes at least one multi-axis transducer. Methods are also disclosed.
Abstract:
A system is disclosed. The system includes a processing station for processing at least one of a tire and a wheel prior to joining the tire and the wheel for forming a tire-wheel assembly. The processing station includes one of a tire lubricating sub-station and a wheel lubricating sub-station. A lubrication conditioning system is fluidly-coupled to the processing station. The lubrication conditioning system includes: a lubricant reservoir, a lubricant temperature modifier arranged at least proximate to the lubricant reservoir, a lubricant temperature sensor arranged within a cavity formed by the lubricant reservoir and a controller communicatively-coupled to both of the lubricant temperature modifier and the lubricant temperature sensor.
Abstract:
A system for testing an implement is disclosed. The system includes: a computing resource, an implement rotating device, a light emitting device and a light receiving device. The implement rotating device rotatably-supports the implement. The implement rotating device is communicatively-coupled to the computing resource. The light emitting device is communicatively-coupled to the computing resource. The light receiving device is communicatively-coupled to the computing resource. The implement rotating device and the implement are arranged between the light emitting device and the light receiving device. The light emitting device and the light receiving device are substantially linearly-aligned with the implement rotating device and the such that upon activating the light emitting device, light that is emitted by the light emitting device is directed toward both of the implement and the light receiving device whereby the light receiving device captures an image corresponding to a portion of the light emitted by the light emitting device and a shadow formed by at least a portion of the implement. The shadow corresponds to another portion of the light that is not received by the light receiving device. The light receiving device communicates the captured image to the computing resource for determining uniformity or a lack of uniformity of the implement. A method for utilizing the system is also disclosed. A computer program product is also disclosed.