Abstract:
The sensor device accurately measures small angle changes of mechanical parts that rotate relative to each other. The sensor device includes only one cylindrical magnet (3) extending axially from a first part; two magnetoresistive sensors (5′,5″) mounted on a second part and located in the magnetic field of the sole magnet (3), the two magnetoresistive sensors having respective magnetic field sensitive layers (MS) facing a magnetic pole of the magnet (3), extending tangentially to a rotation direction in which the parts rotate relative to each other and generating respective output signals according to magnetic field line direction; and a device (PT) for combining the respective output signals of the two magnetoresistive sensors (5′,5″) to produce a combined output signal characteristic of the relative rotation angle of the parts. The combined output signal is set to zero when the parts are at a predetermined relative rotation angle.
Abstract:
A method of calibrating the offset of angle sensors, which determine an angle to be determined on the basis of a sine signal assigned to the angle and a cosine signal assigned to the angle. This method includes determining the sine signal and the cosine signal for at least three different angles to obtain at least three value pairs, each pair containing one sine signal value and one cosine signal value; displaying the at least three value pairs in an at least two-dimensional coordinate system that represents a sine signal-cosine signal plane and determining a point, representing the offset to be calibrated, in the coordinate system with regard to which point the at last three value pairs are located on an arc.
Abstract:
A process for adjusting a magneto-resistive sensor having a pair of current contacts and a pair of voltage contacts to compensate an offset error, without additional components. The magneto-resistive sensor (10) is charged with a homogeneous, definitely oriented magnetic field, a defined control current (I) is applied between its current contacts (22, 24) and at least one of the voltage contacts (30, 32) is trimmed, for example, by a laser beam (38), during the measurement of a pseudo-Hall voltage across the voltage contacts.
Abstract:
The invention relates to a brake caliper of an electromechanical disk brake. According to the invention, in order to measure a widening of a brake caliper when the brake is activated, a rod-shaped holder which is clamped on one side, is arranged in a cavity in a yoke of the brake caliper, perpendicular to a brake disk and a movement of the free end of the holder is measured, for example by means of a magnetic sensor. The widening of the brake caliper is a measurement for the clamping force when the brake disk is actuated.
Abstract:
A dynamometer element including a bolt on which a diaphragm is mounted, the diaphragm being surrounded by a sleeve, to which a force component to be measured is applied perpendicularly to the longitudinal direction of the bolt, the sleeve being spaced from the bolt in such a way that the diaphragm is strained as a function of the force component, a sensor system for measuring the strain being provided on the diaphragm.
Abstract:
A device for impact sensing having an acceleration sensor mechanism on the bumper. The acceleration sensor mechanism is situated between the bumper and a bumper fascia.
Abstract:
In order that a signal can be transmitted without contact from a stationary vehicle part to a rotationally mounted vehicle part, in the case of axial displacement between the parts, provision is made for a rotary transformer having pot-type cores for primary and secondary windings which have L-shaped profiles. These pot-type cores are mounted coaxially inside each other such that one or a plurality of air gaps existing between them run parallel to the rotational axis and are intersected by the magnetic flux radially with respect to the rotational axis. One of the surfaces of the two pot-type cores bordering on the air gaps is provided with a bevel, which tends to decrease the width of the air gap when an axial displacement lengthens the path of the magnetic flux. One of the pot-type cores may include a plurality of ring segments.
Abstract:
A pressure sensor assembly having a pressure tube, in which a diaphragm is situated as a pressure pickup, and having means for detecting the diaphragm deformations, which allow a spatial separation between the measuring medium acting on the diaphragm and the means for detecting the diaphragm deformations. The diaphragm of this pressure sensor assembly includes at least two diaphragm sections oriented at an angle to one another. A first diaphragm section is situated as a partition diaphragm in the cross-section of the pressure tube, while at least one second diaphragm section forms an area of the wall of the pressure tube as a side wall diaphragm. The means for detecting diaphragm deformations are situated on the outer side of the pressure tube on the side wall diaphragm.
Abstract:
A device is proposed for detecting a collision of a vehicle with an obstacle, in which an ultrasonic receiver unit is used to detect the sound produced by the collision, and a collision of the vehicle is thus detected through the evaluation of the ultrasonic signals.
Abstract:
A dynamometer (10; 10a; 10b) has a pickup element (11; 11a; 11b), in which a permanent magnet (32) and a sensor (35) are disposed. At least the permanent magnet (32) is surrounded by ferromagnetic material, and the spacing of the permanent magnet (32) from the ferromagnetic material changes upon imposition of a force (F) upon the pickup element (11; 11a; 11b). This change in the spacing causes a change in the field intensity of the permanent magnet (32), which is detected by means of the sensor (35) and converted into a corresponding signal.