Abstract:
Disclosed herein is a method for determining the endpoint of an etch operation used for forming high aspect ratio features and/or over low open area (
Abstract:
Embodiments of the present disclosure provide methods for forming stair-like structures in manufacturing three dimensional (3D) stacking of semiconductor chips. In one example, a method includes performing a trimming process on a substrate to trim a patterned photoresist layer disposed on a film stack from a first width to a second width in a processing chamber, performing an etching process to etch a portion of the film stack exposed by the trimmed patterned photoresist layer, directing an optical signal to a surface of the trimmed patterned photoresist layer continuously during the trimming and the etching process, collecting a return reflected optical signal reflected from the trimmed patterned photoresist layer, determining a change of reflected intensify of the return reflected optical signal as collected; and calculating a photoresist thickness loss based on the change of the reflected intensity.
Abstract:
Disclosed herein is a method for determining the endpoint of an etch operation used for forming high aspect ratio features and/or over low open area (
Abstract:
A method and apparatus for determining the temperature of a substrate within a processing chamber are described herein. The methods and apparatus described herein utilize an etalon assembly and a heterodyning effect to determine a first temperature of a substrate. The first temperature of the substrate is determined without physically contacting the substrate. A separate temperature sensor also measures a second temperature of the substrate and/or the substrate support at a similar location. The first temperature and the second temperature are utilized to calibrate one of the temperature sensors disposed within the substrate support, a model of the processes performed within the processing chamber, or to adjust a process parameter of the process performed within the processing chamber.
Abstract:
Disclosed herein is an endpoint detection having an optical bundle configured to emit light through a ceiling of a processing chamber. The optical bundle has a plurality of fibers configured to transmit the light from a light source towards a substrate and is configured to receive light reflected from the substrate. The plurality of fibers include a first emitting fiber and a first receiving fiber. The first receiving fiber is radially disposed at a pairing angle from the first emitting fiber, and is configured to receive light emitted from the first emitting fiber. The plurality of fibers further include a second emitting fiber and a second receiving fiber. The second receiving fiber is radially disposed at the pairing angle from the second emitting fiber. The second receiving fiber is configured to receive light originating from the second emitting fiber. The pairing angle is between about 175 degrees and 185 degrees.
Abstract:
A tilted window for use in an endpoint detection system of a processing chamber, and a processing chamber having the same are described herein. In one example, the tilted window includes a mounting frame, and a panel mounted in the mounting frame. The mounting frame has a body having a top surface, a bottom surface, and an inner edge connecting the top surface to the bottom surface of the body of the mounting frame. The mounting frame further has a panel disposed in the mounting frame. The panel has a body having a top surface and a bottom surface. The top surface of the body of the panel is oriented at acute angle relative to the top surface of the body of the mounting frame.
Abstract:
A method and apparatus for determining the temperature of a substrate within a processing chamber are described herein. The methods and apparatus described herein utilize an etalon assembly and a heterodyning effect to determine a first temperature of a substrate. The first temperature of the substrate is determined without physically contacting the substrate. A separate temperature sensor also measures a second temperature of the substrate and/or the substrate support at a similar location. The first temperature and the second temperature are utilized to calibrate one of the temperature sensors disposed within the substrate support, a model of the processes performed within the processing chamber, or to adjust a process parameter of the process performed within the processing chamber.
Abstract:
Embodiments of the present disclosure provide methods for forming stair-like structures with accurate profiles control in manufacturing three dimensional (3D) stacking of semiconductor chips using precise photoresist trimming process endpoint control. In one example, a method of determining a photoresist trimming endpoint for forming stair-like structures on a substrate includes performing a trimming process on a substrate to trim a patterned photoresist layer disposed on a film stack from a first width to a second width in a processing chamber, wherein the patterned photoresist layer exposes a portion of the film stack uncovered by the patterned photoresist layer during the trimming process, directing an optical signal to a surface of the patterned photoresist layer while trimming the patterned photoresist layer, collecting a return reflected optical signal reflected from the photoresist layer, and determining a trimming endpoint by analyzing the return optical signal reflected from the photoresist layer.