Abstract:
Methods of forming a dielectric layer on a substrate are described, and may include introducing a first precursor into a remote plasma region fluidly coupled with a substrate processing region of a substrate processing chamber A plasma may be formed in the remote plasma region to produce plasma effluents. The plasma effluents may be directed into the substrate processing region. A silicon-containing precursor may be introduced into the substrate processing region, and the silicon-containing precursor may include at least one silicon-silicon bond. The plasma effluents and silicon-containing precursor may be reacted in the processing region to form a silicon-based dielectric layer that is initially flowable when formed on the substrate.
Abstract:
A method of forming a dielectric layer is described. The method first deposits an initially-flowable layer on a substrate. The initially-flowable layer is then densified by exposing the substrate to a high-density plasma (HDP). Essentially no additional material is deposited on the initially-flowable layer, in embodiments, but the impact of the accelerated ionic species serves to condense the layer and increase the etch tolerance of the processed layer.
Abstract:
Methods of reducing dislocation in a semiconductor substrate between asymmetrical trenches are described. The methods may include etching a plurality of trenches on a semiconductor substrate and may include two adjacent trenches of unequal width separated by an unetched portion of the substrate. The methods may include forming a layer of dielectric material on the substrate. The dielectric material may form a layer in the trenches located adjacent to each other of substantially equivalent height on both sides of the unetched portion of the substrate separating the two trenches. The methods may include densifying the layer of dielectric material so that the densified dielectric within the two trenches of unequal width exerts a substantially similar stress on the unetched portion of the substrate that separates them.
Abstract:
Methods of reducing dislocation in a semiconductor substrate between asymmetrical trenches are described. The methods may include etching a plurality of trenches on a semiconductor substrate and may include two adjacent trenches of unequal width separated by an unetched portion of the substrate. The methods may include forming a layer of dielectric material on the substrate. The dielectric material may form a layer in the trenches located adjacent to each other of substantially equivalent height on both sides of the unetched portion of the substrate separating the two trenches. The methods may include densifying the layer of dielectric material so that the densified dielectric within the two trenches of unequal width exerts a substantially similar stress on the unetched portion of the substrate that separates them.
Abstract:
Methods of forming gapfill silicon-containing layers are described. The methods may include providing or forming a silicon-and-hydrogen-containing layer on a patterned substrate. The methods include non-thermally treating the silicon-and-hydrogen-containing layer at low substrate temperature to increase the concentration of Si—Si bonds while the silicon-and-hydrogen-containing layer remains soft. The flaccid layer is able to adjust to the departure of hydrogen from the film and retain a high density without developing a stress. Film qualify is further improved by then inserting O between Si—Si bonds to expand the film in the trenches thereby converting the silicon-and-hydrogen-containing layer to a silicon-and-oxygen-containing layer.
Abstract:
Methods of forming a dielectric layer on a substrate are described, and may include introducing a first precursor into a remote plasma region fluidly coupled with a substrate processing region of a substrate processing chamber A plasma may be formed in the remote plasma region to produce plasma effluents. The plasma effluents may be directed into the substrate processing region. A silicon-containing precursor may be introduced into the substrate processing region, and the silicon-containing precursor may include at least one silicon-silicon bond. The plasma effluents and silicon-containing precursor may be reacted in the processing region to form a silicon-based dielectric layer that is initially flowable when formed on the substrate.