Abstract:
Embodiments of the invention generally provide a cooling mechanism utilized in a plasma reactor that may provide efficient temperature control during a plasma process. In one embodiment, a cooling mechanism disposed in a plasma processing apparatus includes a coil antenna enclosure formed in a processing chamber, a coil antenna assembly disposed in the coil antenna enclosure, a plurality of air circulating elements disposed in the coil antenna enclosure adjacent to the coil antenna assembly, and a baffle plate disposed in the coil antenna enclosure below and adjacent to the coil antenna assembly.
Abstract:
Embodiments of the present disclosure generally relate to high efficiency inductively coupled plasma sources and plasma processing apparatus. Specifically, embodiments relate to grids to improve plasma uniformity. In one embodiment, a plasma processing apparatus is provided. The plasma processing apparatus includes a processing chamber, a substrate support disposed within the processing chamber, a grid support coupled to the processing chamber, and a grid. The grid is coupled to the grid support and disposed above the substrate support. The grid has a plurality of holes and one or more outer openings defined between a circumference of the grid and the grid support. Plasma received from a plasma source is configured to flow through the plurality of holes and the one or more outer openings of the grid towards the substrate support.
Abstract:
Embodiments of the invention generally provide a cooling mechanism utilized in a plasma reactor that may provide efficient temperature control during a plasma process. In one embodiment, a cooling mechanism disposed in a plasma processing apparatus includes a coil antenna enclosure formed in a processing chamber, a coil antenna assembly disposed in the coil antenna enclosure, a plurality of air circulating elements disposed in the coil antenna enclosure adjacent to the coil antenna assembly, and a baffle plate disposed in the coil antenna enclosure below and adjacent to the coil antenna assembly.
Abstract:
A method and apparatus for forming a semiconductor device are provided. The method includes thermally treating a substrate having one or more silicon nanosheets formed thereon. Thermally treating the substrate includes positioning the substrate in a processing volume of a first processing chamber, the substrate having one or more silicon nanosheets formed thereon. Thermally treating the substrate further includes heating the substrate to a first temperature of more than about 250 degrees Celsius, generating hydrogen radicals using a remote plasma source fluidly coupled with the processing volume, and maintaining the substrate at the first temperature while concurrently exposing the one or more silicon nanosheets to the generated hydrogen radicals. The generated hydrogen radicals remove residual germanium from the one or more silicon nanosheets.
Abstract:
A method of post-deposition processing includes performing a preheat process in a radical treatment chamber, the preheat process comprising exposing a substrate having a metal layer formed thereon to purge gas and purging the purge gas at a pressure of between 400 Torr and 535 Torr, and performing a radical treatment process in the radical treatment chamber, the radical treatment process comprising exposing the substrate to radical species.
Abstract:
A process chamber is provided including a chamber body disposed around a process volume, the process volume bounded by one or more interior side walls; a substrate support in the process volume; a plasma source disposed over the substrate support, the plasma source having a top and one or more sides disposed around a plasma-generating volume; and a first deflector positioned at least partially in the process volume, the first deflector comprising an annular body having a top, a bottom, one or more outer side surfaces connecting the top with the bottom, and one or more inner side surfaces connecting the top with the bottom. The one or more outer side surfaces of the annular body are spaced apart from the one or more interior side walls of the process volume.