摘要:
An ion implantation apparatus, system, and method are provided for connecting and disconnecting a workpiece holder from a scan arm. A twist head is provided, wherein an electrostatic chuck is operable to be mounted, wherein one or more rotating and non-rotating members associated with one or more of the twist head and electrostatic chuck have one or more dynamic electrical and fluid rotary connections associated therewith. The electrostatic chuck is further operable to be removed from the twist head without disconnecting the one or more dynamic fluid seals.
摘要:
An ion implantation apparatus, system, and method are provided for connecting and disconnecting a workpiece holder from a scan arm. A twist head is provided, wherein an electrostatic chuck is operable to be mounted, wherein one or more rotating and non-rotating members associated with one or more of the twist head and electrostatic chuck have one or more dynamic electrical and fluid rotary connections associated therewith. The electrostatic chuck is further operable to be removed from the twist head without disconnecting the one or more dynamic fluid seals.
摘要:
An electrostatic clamp is provided having a clamping plate, wherein the clamping plate has a central region and an annulus region. A plurality of gas supply orifices are defined in the central region of the clamping plate, wherein the plurality of gas supply orifices are in fluid communication with a pressurized gas supply, and wherein the pressurized gas supply is configured to provide a cushion of gas between the clamping surface and the workpiece in the central region of the clamping plate via the plurality of gas supply orifices. One or more gas return orifices defined in one or more of the central region and annulus region of the clamping plate, wherein the one or more gas return orifices are in fluid communication with a vacuum source, therein generally defining an exhaust path for the cushion of gas. A seal is disposed in the annulus region of the clamping plate, wherein the seal is configured to generally prevent a leakage of the cushion of gas from the central region to an environment external to the annulus region. One or more electrodes are further electrically connected to a first voltage potential to provide a first clamping force.
摘要:
An ion beam angle calibration and emittance measurement system, comprising a plate comprising an elongated slit therein, wherein the elongated slit positioned at a rotation center of the plate and configured to allow a first beam portion to pass therethrough. A beam current detector located downstream of the plate, wherein the beam current detector comprises a slit therein configured to permit a second beam portion of the first beam portion to pass therethrough, wherein the beam current detector is configured to measure a first beam current associated with the first beam portion. A beam angle detector is located downstream of the beam current detector and configured to detect a second beam current associated with the second beam portion. The plate, the current beam detector and the beam angle detector are configured to collectively rotate about the rotation center of the plate.
摘要:
An ion beam angle calibration and emittance measurement system, comprising a plate comprising an elongated slit therein, wherein the elongated slit positioned at a rotation center of the plate and configured to allow a first beam portion to pass therethrough. A beam current detector located downstream of the plate, wherein the beam current detector comprises a slit therein configured to permit a second beam portion of the first beam portion to pass therethrough, wherein the beam current detector is configured to measure a first beam current associated with the first beam portion. A beam angle detector is located downstream of the beam current detector and configured to detect a second beam current associated with the second beam portion. The plate, the current beam detector and the beam angle detector are configured to collectively rotate about the rotation center of the plate.
摘要:
An electrostatic clamp is provided having a clamping plate, wherein the clamping plate has a central region and an annulus region. A plurality of gas supply orifices are defined in the central region of the clamping plate, wherein the plurality of gas supply orifices are in fluid communication with a pressurized gas supply, and wherein the pressurized gas supply is configured to provide a cushion of gas between the clamping surface and the workpiece in the central region of the clamping plate via the plurality of gas supply orifices. One or more gas return orifices defined in one or more of the central region and annulus region of the clamping plate, wherein the one or more gas return orifices are in fluid communication with a vacuum source, therein generally defining an exhaust path for the cushion of gas. A seal is disposed in the annulus region of the clamping plate, wherein the seal is configured to generally prevent a leakage of the cushion of gas from the central region to an environment external to the annulus region. One or more electrodes are further electrically connected to a first voltage potential to provide a first clamping force.