Abstract:
The invention relates to an process for coating a glass substrate with an environmentally friendly aqueous, fluoropolymer coating composition. The process involves applying a polyurethane primer to the glass substrate, and partially, but not completely crosslinking this primer coating. An aqueous hydroxyl-functional fluoropolymer coating is then applied to the partially crosslinked primer coating, and the coating allowed to fully cure. The invention also relates to the intertwined multilayer primer/fluoropolymer coating on the glass substrate. The final coating has excellent wet adhesion to glass, good weathering, durability, chalking resistance, chemical resistance, and dirt pickup resistance.
Abstract:
This invention relates to a waterborne fluoropolymer composition useful for the fabrication of Li-Ion-Battery (LIB) electrodes. The fluoropolymer composition contains an organic carbonate compound, which is more environmentally friendly than other fugitive adhesion promoters currently used in waterborne fluoropolymer binders. An especially useful organic carbonate compound is ethylene carbonate (EC) and vinylene carbonate (VC), which are solids at room temperature, and other carbonates which are liquid at room temperature such as propylene carbonate, methyl carbonate and ethyl carbonate. The composition of the invention is low cost, environmentally friendly, safer, and has enhanced performance compared to current compositions.
Abstract:
The invention relates to a separator for non-aqueous-type electrochemical device that has been coated with an aqueous fluoropolymer coating. The fluoropolymer is preferably polyvinylidene fluoride (PVDF), and more preferably a copolymer of polyvinylidene fluoride. The fluoropolymer coating provides a porous coating on porous substrate separator used in non-aqueous-type electrochemical devices, such as batteries and electric double layer capacitors. The fluoropolymer coating improves the thermal resistance and mechanical integrity, and lowers the interfacial electrical impedance of the porous separator. The fluoropolymer composition optionally contains powdery particles that are held together on the separator by the fluoropolymer binder. In one embodiment, the starting fluoropolymer dispersion is free of fluorinated surfactant. In another embodiment, one or more fugitive adhesion promoters are added.
Abstract:
The invention relates to an process for coating a glass substrate with an environmentally friendly aqueous, fluoropolymer coating composition. The process involves applying a polyurethane primer to the glass substrate, and partially, but not completely crosslinking this primer coating. An aqueous hydroxyl-functional fluoropolymer coating is then applied to the partially crosslinked primer coating, and the coating allowed to fully cure. The invention also relates to the intertwined multilayer primer/fluoropolymer coating on the glass substrate. The final coating has excellent wet adhesion to glass, good weathering, durability, chalking resistance, chemical resistance, and dirt pickup resistance.
Abstract:
Hollow fiber membranes having improved toughness and durability are prepared using a vinylidene fluoride polymer-containing component, such as Kynaro resins, having relatively low crystallinity. One aspect of the invention provides a membrane in the form of a fiber, wherein i) the fiber has a porous wall of a polymeric component enclosing a central hollow space extending the length of the fiber, ii) the polymeric component has a crystallinity as determined by wide angle x-ray diffraction of less than about 35%, iii) the polymeric component is comprised of at least one homopolymer or copolymer of vinylidene fluoride and iv) the membrane has an energy to break of at least about 0.5 J per square mm of membrane cross section.
Abstract:
The invention relates to an intertwined multilayer primer/fluoropolymer coating on the glass substrate. The final coating has excellent wet adhesion to glass, good weathering, durability, chalking resistance, chemical resistance, and dirt pickup resistance. The coating is an environmentally friendly aqueous, fluoropolymer coating composition. The coating process involves applying a polyurethane primer to the glass substrate, and partially, but not completely crosslinking this primer coating. An aqueous hydroxyl-functional fluoropolymer coating is then applied to the partially cross-linked primer coating, and the coating allowed to fully cure. The invention also relates to the intertwined multilayer primer/fluoropolymer coating on the glass substrate. The final coating has excellent wet adhesion to glass, good weathering, durability, chalking resistance, chemical resistance, and dirt pickup resistance.
Abstract:
A nanodiamond coating for use on a solar cell, the coating including a nanodiamond material suspended in a liquid, wherein the nanodiamond material has a size range from about 1 nm to about 10 nm. Methods for improving the efficiency of a solar cell are provided, including, mixing a nanodiamond material with a liquid polymer or non-polymer solvent to form a nanodiamond-polymer suspension, forming a coating of the suspension on a top surface of a solar cell, and drying the coating such that a dried nanodiamond-polymer layer remains bonded to the solar cell. Useful nanodiamond coating compositions may include a nanodiamond material, a fluoropolymer, a liquid solvent for the fluoro-polymer and at least one additive selected from the group consisting of dispersing agents, adhesion promoters, and coupling agents. The fluoropolymer may also be used in the form of an aqueous dispersion.
Abstract:
This invention relates to a waterborne fluoropolymer composition useful for the fabrication of Li-ion-Battery (LIB) electrodes. The fluoropolymer composition contains an organic carbonate compound, which is more environmentally friendly than other fugitive adhesion promoters currently used in waterborne fluoropolymer binders. An especially useful organic carbonate compound is ethylene carbonate (EC) and vinylene carbonate (VC), which are solids at room temperature, and other carbonates which are liquid at room temperature such as propylene carbonate, methyl carbonate and ethyl carbonate. The composition of the invention is low cost, environmentally friendly, safer, and has enhanced performance compared to current compositions.
Abstract:
The invention relates to a polyvinylidene fluoride (PVDF) solvent dispersion composition containing PVDF (such as KYNAR 500) that is free of fluorosurfactants, an organic solvent, and low levels of dispersants. A pigmented version of this dispersion is also covered. The dispersion is useful for producing tough, chemical-resistant coatings, especially on metallic substrates, including for use as a coil coating or an architectural coating.
Abstract:
The invention relates to integrated electrode separators (IES), and their use in lithium ion batteries as replacements for free standing separators. The IES results from coating an electrode with a fluoropolymer aqueous-based emulsion or suspension, and drying the coating to produce a tough, porous separator layer on the electrodes. The aqueous fluoropolymer coating may optionally contain dispersed inorganic particles and other additives to improve electrode performance such as higher ionic conduction or higher temperature use. The IES provides several advantages, including a thinner, more uniform separator layer, and the elimination of a separate battery component (separator membrane) for a simpler and cost-saving manufacturing process. The aqueous separator coating can be used in combination with a solvent cast electrode as well as an aqueous cast electrode either in two separate process steps, or in a one-step process.