摘要:
A computer-readable medium stores a magnetic substrate simulation program causing a computer to execute a process that includes calculating an effective magnetic field for each area of an element in the magnetic substrate, when magnetization of each area changes and based on a magnetic field generated from magnetic energy in each area and a rate of change of magnetization working in a direction inhibiting change in the average magnetization of the areas; obtaining for each area and based on the calculated effective magnetic fields and magnetization of each area, changes in magnetization and calculating for each area, magnetization after the changes; judging based on magnetization of each area before and after the changes, whether magnetization in the element converges; and storing a combination of the average magnetization of the areas for which magnetization in the given element converges and a static magnetic field based on the average magnetization.
摘要:
A computer-readable medium stores a magnetic substrate simulation program causing a computer to execute a process that includes calculating an effective magnetic field for each area of an element in the magnetic substrate, when magnetization of each area changes and based on a magnetic field generated from magnetic energy in each area and a rate of change of magnetization working in a direction inhibiting change in the average magnetization of the areas; obtaining for each area and based on the calculated effective magnetic fields and magnetization of each area, changes in magnetization and calculating for each area, magnetization after the changes; judging based on magnetization of each area before and after the changes, whether magnetization in the element converges; and storing a combination of the average magnetization of the areas for which magnetization in the given element converges and a static magnetic field based on the average magnetization.
摘要:
A magneto resistance effect device includes a fixed magnetization portion including a ferromagnetic material, in which the magnetization direction can be fixed, and a tunnel barrier layer including high band gap metal oxide and low band gap metal oxide, and arranged on the fixed magnetization portion. The device includes a free magnetization portion including a ferromagnetic material, arranged on the tunnel barrier layer, in which the magnetization can be changed.
摘要:
The method of the present invention provides a magnetoresistance effect element, which is capable of having a high MR ratio, corresponding to high density recording and being suitably applied to a magnetoresistance device even though a barrier layer is thinned to reduce resistance of the magnetoresistance effect element. The method of producing the magnetoresistance effect element, which includes the barrier layer composed of an oxidized metal, a first magnetic layer contacting one of surfaces of the barrier layer and a second magnetic layer contacting the other surface thereof, comprises the steps of: laminating the barrier layer on the first magnetic layer with using a target composed of the oxidized metal; and laminating the second magnetic layer on the barrier layer. The barrier layer is annealed before laminating the second magnetic layer thereon.
摘要:
In comparison with conventional exchange-coupled elements, the exchange-coupled element of the present invention has greater unidirectional magnetization anisotropy. The exchange-coupled element comprises: an ordered antiferromagnetic layer; and a pinned magnetic layer being exchange-coupled with the ordered antiferromagnetic layer, the pinned magnetic layer having unidirectional magnetization anisotropy. The pinned magnetic layer is constituted by a first pinned magnetic layer having a composition, which can have a face-centered cubic lattice structure, and a second pinned magnetic layer having a composition, which can have a body-centered cubic lattice structure.
摘要:
The soft magnetic film has superior soft magnetic characteristics and is suitable for a thin film magnetic head. The soft magnetic film of the present invention comprises: a magnetic base layer including a ferromagnetic element; and a ferromagnetic layer being piled on the magnetic base layer. The soft magnetic film has uniaxial magnetic anisotropy. The magnetic base layer includes at least one element selected from Fe, Ni and Co as the ferromagnetic element.
摘要:
A soft magnetic film includes a ferromagnetic layer. The ferromagnetic layer is laid over a non-magnetic substructure including ferromagnetic atoms. The uniaxial magnetic anisotropy may be established in the ferromagnetic layer. Since a magnetic property is not required in the substructure under the ferromagnetic layer, the soft magnetic film of this type may be utilized for purposes of wider variations.
摘要:
A method for manufacturing a magnetoresistance head of the present invention comprises the steps of forming an organic film on a multilayered film constituting a magnetoresistance device, forming an upper film formed of resist or inorganic film on the organic film, patterning the organic film and the upper film, cutting into edges of the organic film patterns from edges of the upper film patterns inwardly to such an extent that particles of the thin film being formed on the upper film and the multilayered film do not contact to side portions of the organic film patterns.
摘要:
A method for manufacturing a magnetoresistance head of the present invention comprises the steps of forming an organic film on a multilayered film constituting a magnetoresistance device, forming an upper film formed of resist or inorganic film on the organic film, patterning the organic film and the upper film, cutting into edges of the organic film patterns from edges of the upper film patterns inwardly to such an extent that particles of the thin film being formed on the upper film and the multilayered film do not contact to side portions of the organic film patterns.
摘要:
A magneto-resistive head is provided with a substrate, a lower shield layer made of a Fe-system magnetic material and provided above the substrate, and a non-magnetic insulator layer provided above the lower shield layer. The non-magnetic insulator layer has a function of suppressing deterioration of surface roughness of the lower shield layer when subjected to an annealing process under a magnetic field in order to improve magnetic characteristics of the lower shield layer to desired magnetic characteristics.