摘要:
Supply of fuel is stopped when fuel pressure sensed by a pressure sensor provided upstream of a regulator is at a predetermined value or less to avoid abnormal combustion caused by improper adjustment of air/fuel ratio. Even slight variation of the fuel pressure is sensed by monitoring the fuel pressure in an interval after closing a fuel shut-off valve once opened to re-opening of it. In addition, an abnormal state in the fuel system is detected by comparing an accumulated value of amount of injected fuel and an estimated value of fuel consumption in the tank. Furthermore, the peak current value of the fuel injection valve is controlled so that, when the engine at a low temperature is started, lift load of the injection valve is larger than sticking force of the injection valve, thereby preventing such situation where the injection valve is frozen so that it cannot supply fuel to the engine. In this case, the engine can be smoothly started by simultaneously controlling the valve open time. Furthermore, the temperature of the regulator is properly maintained so that optimum function can be exhibited by controlling the flow rate of cooling water flowing through a water passage provided in the regulator for regulating the fuel gas pressure.
摘要:
An air-fuel ratio control system for an internal combustion engine includes an ECU which cuts off fuel supply to the engine at deceleration thereof, measures a fuel cut-off period over which the fuel cut-off means cuts off fuel supply to the engine, and enriches the air-fuel ratio of a mixture supplied to the engine to a degree dependent upon the measured fuel cut-off period, at the restart of fuel supply to the engine immediately after termination of cutting-off of fuel supply to the engine. When a second cutting-off of fuel supply to the engine is carried out within a predetermined time period after the restart of fuel supply to the engine immediately after termination of a first cutting-off of fuel supply to the engine, the ECU sets the degree of enriching the air-fuel ratio of the mixture supplied to the engine according to the sum of a first fuel cut-off period over which the first cutting-off of fuel supply to the engine lasted and a second fuel cut-off period over which the second cutting-off of fuel supply to the engine lasted.
摘要:
A system for detecting failure of a fuel pressure sensor in an internal combustion engine, including an injector (32) provided at an intake system of the engine downstream of a throttle valve (38), a fuel supply passage (16) connected to a fuel supply source (fuel tank 12) for supplying fuel to the injector (32), pressure regulator (28) provided in the fuel supply passage (16) and operating to maintain a difference between the fuel pressure (PF2A) and the manifold absolute pressure at a constant value, a fuel pressure sensor (PF2 sensor 54) for detecting the fuel pressure (PF2A) in the fuel supply passage (16) downstream of the pressure regulator, and a manifold absolute pressure sensor (62) for detecting the manifold absolute pressure (PBA) downstream of the throttle valve (38). In the system, an index indicative of a ratio (.DELTA.PF2A) of the fuel pressure (PF2A) fluctuation relative to the manifold absolute pressure (PBA) fluctuation is compared to reference values (#PF2L, #PF2H) which define a range. Sensor failure is discriminated when the index (.DELTA.PF2A) is found to have remained outside of the range for a predetermined maximum time (tmP2STK). The system enables rapid and accurate detection of fuel pressure sensor abnormality (failure).
摘要:
An oxygen concentration sensor abnormality-detecting system is provided for an internal combustion engine having first and second oxygen concentration sensors arranged in the exhaust system upstream and downstream of a catalytic converter therein. An ECU determines that the first oxygen concentration sensor is functioning abnormally if an output from the first oxygen concentration sensor does not change when an output from the second oxygen concentration sensor changes.
摘要:
A drive unit for a vehicle includes: an engine (2); a compound motor (3) having a first rotor and a second rotor that are differentially rotatable with each other; and an automatic transmission (4A) that delivers power output of the engine (2), which is input via the compound motor (3), to an output shaft (33), in which the first rotor is connected to an input side of a gear pair that corresponds to an even shift speed and the second rotor is connected to an input side of a gear pair that corresponds to an odd shift speed.
摘要:
The present invention provides a manufacturing method of a sheet glass material excellent in flatness. A manufacturing method of glass substrate for magnetic disk including a pair of principal surfaces, the method comprising the steps of: dropping process for dropping a lump of molten glass; pressing process for forming a sheet glass material by performing press forming to the lump while sandwiching the lump from both sides of the dropping path of the lump with facing surfaces of a pair of dies, the pair of dies being set to substantially the same temperature; and processing process for processing the sheet glass material, while the lump drops down while revolving around its dropping axis.
摘要:
In an engine start control device of a hybrid vehicle including a power dividing mechanism which has a sun roller, a carrier, and a first disc with which a rotating shaft of a first motor/generator, an output shaft of an engine, and an output shaft of a second motor/generator are coupled, respectively and by which differential rotating operations between the sun roller, the carrier, and the first disc are controlled using an alignment chart on which rotation speeds of the sun roller, the carrier, and the first disc are disposed in the sequence of the sun roller, the carrier, the first disc and shown by straight lines.
摘要:
Provided is a compound motor (14) comprising a magnet rotor (19) supported by bearings (B3, B4) in a rotatable manner, a winding rotor (20) supported by bearings (B5, B6) in a rotatable manner relative to the magnet rotor (19) at the inner side of the magnet rotor (19) and having rotor winding units (20b), and slip ring mechanisms (25). A space is formed in the inner circumference of the winding rotor (20). At least a part of the slip ring mechanisms (25) is arranged in the space of the inner circumference of the winding rotor (20). The bearings (B3 to B6) include bearings (B3, B6), the internal diameter of each is larger than the size of slip ring mechanisms (25) with respect to the radial direction. The bearings (B3, B6) are arranged outside the slip ring mechanisms (25) with respect to the radial direction.
摘要:
This lubricating device 1 is equipped with an oil pan 2 that stores therein lubricating oil, a micro bubble generator 4 that mixes the lubricating oil with air to produce micro bubbles and supplies the lubricating oil in the oil pan 2 with the micro bubbles, and an oil pump 3 that pressurizes the lubricating oil in the oil pan 2 to supply the micro bubble generator 4 therewith. Further, in this lubricating device 1, the micro bubble generator 4 has an air inlet portion 431 disposed inside the oil pan 2 at a predetermined position with respect to an oil surface height (oil level) of the lubricating oil in the oil pan 2.
摘要:
During an inertial energy storage operation, electric power conversion at an inverter is controlled such that a direct current electric power from an electric power storage device is converted into an alternating current by the inverter so as to be supplied to stator windings, such that torque in the direction of engine rotation is applied to an output side rotor from a stator to rotatively drive the output side rotor in a state where power transmission from the output side rotor to a drive axle is stopped. During a cranking operation after the inertial energy storage operation, the electric power conversion at an inverter is controlled to permit application of the alternating current to rotor windings, such that a torque in the direction of engine rotation is applied to an input side rotor from the output side rotor, thereby rotatively driving an input side rotor to crank the engine.