Abstract:
A vehicle driving device includes: a clutch that is provided between a driving shaft of an engine and an input shaft of a manual transmission and that connects the driving shaft and the input shaft to each other or disconnects the driving shaft and the input shaft from each other; a detection unit that detects an obstacle that is an obstacle to traveling of a host vehicle; a collision possibility determination unit that determines a possibility of collision between the obstacle and the host vehicle based on obstacle detection information detected by the detection unit; and a collision avoidance unit that, when the collision possibility determination unit determines that there is a possibility of collision with the obstacle, performs a fuel cut of the engine even if a rotation speed of the engine is less than an idling rotation speed.
Abstract:
To enable smooth, highly accurate deceleration in various usage conditions of an outboard motor and realize stabilized engine speed after deceleration, a fuel controller for controlling the amount of fuel fed to an engine of an outboard motor mounted on a boat includes a deceleration determining section arranged to determine deceleration of the boat, an engine speed detecting section arranged to detect the engine speed of the engine, an engine load detecting section arranged to detect the load on the engine, and a controller arranged to control the amount of fuel fed to the engine when the boat is in deceleration according to the detected engine speed and engine load.
Abstract:
A fuel injection system is proposed which is triggerable in such a way that in the presence of control signals, in particular those characterizing engine overrunning, the fuel injection is interrupted. The fuel injection system includes metering valves to each of which one regulating valve is assigned, the valves each having a movable valve element which can be subjected on the one hand to the fuel pressure downstream of the respective metering valve and a spring and on the other hand to the pressure in a control pressure line. In the fuel supply line a pressure-reduction valve is provided upstream of the metering valve. During engine overrunning, the fuel pressure in the control pressure line is controllable by means of an electromagnetic valve in such a way that the fuel pressure in the control pressure line increases and the regulating valves close as a result of which the fuel injection is interrupted.
Abstract:
A pump and pump system employs electromagnetic actuation during discrete, periodic time periods, imparting rapid strokes covering small distances. Each stroke is delineated by stop members at least one of which is of wedge-like form and is controllably shifted to vary the stroke.
Abstract:
An improved charge forming system for an internal combustion engine. Fuel and air are metered to the engine as functions of both operator control and manifested engine power output. The incremental changes in fuel flow and air flow which are effected as a result of changes in engine power output are unequal so that the total fuel-air mix ingested by the engine becomes leaner as engine power increases. When the fuel-air mixture becomes so lean that engine power decreases, the charge forming system enriches the mixture so that the system maximizes engine power for any given rate of fuel flow. In a presently preferred embodiment the fuel-air ratio supplied to the engine is leaner than the stoichiometric mixture.
Abstract:
In a fuel injection nozzle there is disposed a valve member which, during normal operation, maintains the nozzle open but which, when actuated by a control liquid admitted to the nozzle in a control conduit, hermetically obturates the nozzle opening.
Abstract:
A vehicle driving device includes: a clutch that is provided between a driving shaft of an engine and an input shaft of a manual transmission and that connects the driving shaft and the input shaft to each other or disconnects the driving shaft and the input shaft from each other; a detection unit that detects an obstacle that is an obstacle to traveling of a host vehicle; a collision possibility determination unit that determines a possibility of collision between the obstacle and the host vehicle based on obstacle detection information detected by the detection unit; and a collision avoidance unit that, when the collision possibility determination unit determines that there is a possibility of collision with the obstacle, performs a fuel cut of the engine even if a rotation speed of the engine is less than an idling rotation speed.
Abstract:
A control apparatus for a motor vehicle detects a catalyst temperature during fuel cut. If the catalyst temperature is higher than a predetermined temperature, the control apparatus almost completely opens a throttle valve and increases an amount of intake air to thereby reduce pumping loss. If the catalyst temperature is equal to or lower than the predetermined temperature, the throttle valve is almost completely closed. Thereby it becomes possible to reduce pumping loss of the engine while preventing an excessive decrease in catalyst temperature.