Abstract:
An image sensor is provided. The image sensor includes a photoelectric conversion portion including a light receiving element; and a well region defined by a wall structure that is formed integrally on the photoelectric conversion portion, wherein the well region is positioned to correspond to the light receiving element of the photoelectric conversion portion. An image sensor device and methods of manufacture are also provided.
Abstract:
A diffraction grating light modulator composed of a plurality of diffraction grating light modulating elements formed on a substrate, each consisting of a lower electrode, belt-like fixed electrodes and movable electrodes supported above the lower electrode, and exposed connecting terminals (for electrical connection to external circuits) electrically connected to the movable electrodes, the fixed electrodes and the movable electrodes constituting a diffraction grating upon application of a voltage to the lower electrode, the diffraction grating light modulator having a protective electrode surrounding the connecting terminals, so that the diffraction grating light modulating element is certainly protected from damage by static electricity.
Abstract:
An optical modulation device is disclosed which can suppress production of a cause of degradation such as a void or hillock on a light illumination surface thereof and can be incorporated in an image display apparatus of a small size and a high luminance to improve the reliability of the same. The optical modulation device includes first and second surface elements movable relative to each other to form different diffraction gratings to modulate light inputted thereto. Each of the first and second surface elements has a light illumination surface made of an AlCu alloy material. The optical modulation device has an airtight sealed space in which surrounding gas for the first and second surface elements is encapsulated. The surrounding gas contains hydrogen gas or helium gas or both of hydrogen gas and helium gas.
Abstract:
[Object]To provide an image sensor having high light collection efficiency and less crosstalk among pixels, a production method therefor, and an inspection apparatus.[Solving means]In an image sensor including a light source conversion unit that includes a plurality of light-receiving devices and converts incident light into an electric signal, a plurality of lenses that are provided in an immediately-above area of the light-receiving devices and collect light toward a light-receiving unit of the light-receiving devices positioned right below the lenses, and an insulation layer that is formed of an optically-transparent material and formed above the lenses, detection areas are provided on a surface of the insulation layer while being apart from one another for each of the light-receiving devices, a center of each of the detection areas being positioned on an extended line connecting a center of the light-receiving unit of each of the light-receiving devices and a center of the lens provided right above each of the light-receiving devices. In addition, a sample as a detection target is fixed to at least the detection areas.
Abstract:
A light reflection and diffraction element for enhancing the contrast of an image display device. In an off state of the element, a portion exhibiting a cyclic structure for diffracting incident light in a region where reflective members having reflection surfaces are aligned is reduced by preventing the generation of unrequired diffracted light. For example, by covering connection regions of the ribbon reflective members by light shielding masks, incident light is shielded. Preferably, any uneven state of the reflection surfaces of the ribbon reflective members is controlled, and a correlation length is made small.
Abstract:
An image of an inspection target having a concave and convex pattern is picked up in an off-focus state by an image pickup element 4. Further, the image of the inspection target picked up in the off-focus state is taken in by an image processing computer 6. Based on the image, the image processing computer 6 prepares a light intensity profile having a peak corresponding to a boundary portion between a concave portion and a convex portion of the concave and convex pattern of the inspection target. For example, a change of the width of the concave or convex portion of the concave and convex portion can be detected very accurately, by measuring the width of the concave or convex portion of the concave and convex portion on the basis of the intensity profile.
Abstract:
An optical modulation device is disclosed which can suppress production of a cause of degradation such as a void or hillock on a light illumination surface thereof and can be incorporated in an image display apparatus of a small size and a high luminance to improve the reliability of the same. The optical modulation device includes first and second surface elements movable relative to each other to form different diffraction gratings to modulate light inputted thereto. Each of the first and second surface elements has a light illumination surface made of an AlCu alloy material. The optical modulation device has an airtight sealed space in which surrounding gas for the first and second surface elements is encapsulated. The surrounding gas contains hydrogen gas or helium gas or both of hydrogen gas and helium gas.
Abstract:
The state of a polysilicon film formed by excimer laser annealing an amorphous silicon film is to be evaluated. When the amorphous silicon film is annealed to form a polysilicon film, linearity or periodicity presents itself in the spatial structure of the film surface of the polysilicon film formed depending on the energy applied to the amorphous silicon during annealing. This linearity or periodicity is processed as an image and represented numerically from the image by exploiting the linearity or periodicity. The state of the polysilicon film is checked based on the numerical results.
Abstract:
Providing an electrostatic machine element for restraining deteriorations of practical electrostatic forces between electrodes by an electrostatic shielded effect to prevent instability of an electrode operation, a light diffraction modulation element using the electrostatic machine element and an image display device using the light diffraction modulation element. An edge and an upper side of a first electrode are opened and a dielectric material, the mobility of which depends on a polarity of an electric charge, is used for a second dielectric film. When a drive voltage such that the electric charge having high mobility moves from one dielectric film to another dielectric film, is applied between the first electrode and a second electrode, a charged particle that arrived at the first dielectric film moves further to the upper side of the first electrode.
Abstract:
[Object]To provide an image sensor having high light collection efficiency and less crosstalk among pixels, a production method therefor, and an inspection apparatus.[Solving means]In an image sensor including a light source conversion unit that includes a plurality of light-receiving devices and converts incident light into an electric signal, a plurality of lenses that are provided in an immediately-above area of the light-receiving devices and collect light toward a light-receiving unit of the light-receiving devices positioned right below the lenses, and an insulation layer that is formed of an optically-transparent material and formed above the lenses, detection areas are provided on a surface of the insulation layer while being apart from one another for each of the light-receiving devices, a center of each of the detection areas being positioned on an extended line connecting a center of the light-receiving unit of each of the light-receiving devices and a center of the lens provided right above each of the light-receiving devices. In addition, a sample as a detection target is fixed to at least the detection areas.