Abstract:
The present invention relates to a precursor (1) for production of a high-temperature superconductor (HTS) in ribbon form, comprising a metallic substrate (10) in ribbon form having a first ribbon side (11) and a second ribbon side (12), wherein, on the first ribbon side (11), (a) the substrate (10) has a defined texture as template for crystallographically aligned growth of a buffer layer or an HTS layer and (b) an exposed surface of the substrate (10) is present or one or more layers (20,30) are present that are selected from the group consisting of: buffer precursor layer, pyrolyzed buffer precursor layer, buffer layer, HTS precursor layer, pyrolyzed HTS buffer precursor layer and pyrolyzed and further consolidated HTS buffer precursor layer, and, on the second ribbon side (12), at least one ceramic barrier layer (40) that protects the substrate (10) against oxidation or a precursor which is converted to such a layer during the HTS crystallization annealing or the pyrolysis is present, wherein, when one or more layers (20, 30) are present on the first ribbon side (11), the ceramic barrier layer (40) or the precursor thereof has a different chemical composition and/or a different texture than the layer (20) arranged on the first ribbon side (11) and directly adjoining the substrate (10). In this precursor, the barrier layer (40) is a layer that delays or prevents ingress of oxygen to the second ribbon side (12) and is composed of conductive ceramic material or a precursor which is converted to such a precursor during the HTS crystallization annealing or the pyrolysis, and the ceramic material is an electrically conductive metal oxide or an electrically conductive mixture of metal oxides, wherein the conductive metal oxide or one or more metal oxides in the conductive mixture is/are preferably metal oxide(s) doped with an extraneous metal.
Abstract:
Superconducting articles are disclosed which comprise at least two superconducting tapes (10, 20), each tape comprising a stabilizer layer (15, 25), a superconductor layer (13, 23), and a buffer layer (12, 22) formed in that order on a substrate (11, 21), and at least one metal tape (1) attached to the superconducting tapes via a solder layer (2) along at least twice the length of a joint region where the two superconducting tapes overlap or are overlapped by a bridge (30).
Abstract:
The present invention is in the field of nanoparticles, their preparation and their use as pinning centers in superconductors. In particular the present invention relates to nanoparticles comprising an oxide of Sr, Ba, Y, La, Ti, Zr, Hf, Nb, or Ta, wherein the nanoparticles have a weight average diameter of 1 to 30 nm and wherein an organic compound of general formula (I), (II) or (III) or an organic compound containing at least two carboxylic acid groups on the surface of the nanoparticles (I) (II) (III) wherein a is 0 to 5, b and c are independent of each other 1 to 14, n is 1 to 5, f is 0 to 5, p and q are independent of each other 1 to 14, and e and f are independent of each other 0 to 12.
Abstract:
The present invention is in the field of processes for the production of high temperature super-conductor wires. In particular, the present invention relates to a process for the production of high temperature superconductor wires comprising heating a film comprising yttrium or a rare earth metal, an alkaline earth metal, and a transition metal to a temperature of at least 700° C. and cooling the film to a temperature below 300° C., wherein the heating and cooling is per-formed at least twice.
Abstract:
The present invention deals with precursor composition for alkaline earth metal containing ceramic layers. In particular, the present invention pertains to a precursor composition containing:(i) one or more soluble compounds of transition metals (ii) one or more soluble compounds of alkaline earth metals (iii) one or more soluble compounds of rare earth metals (iv) difluorinated carboxylate and/or partly fluorinated propionates (v) one or more solvents, wherein the difference between the boiling points of the corresponding acid of the components (i) to (iii) to the boiling point of component (iv) is less than 60 K.
Abstract translation:本发明涉及含有碱土金属的陶瓷层的前体组合物。 特别地,本发明涉及一种前体组合物,其包含:(i)一种或多种可溶性过渡金属化合物(ii)一种或多种可溶性碱土金属化合物(iii)一种或多种可溶性稀土金属化合物(iv )二氟化羧酸盐和/或部分氟化丙酸盐(v)一种或多种溶剂,其中组分(i)至(iii)的相应酸的沸点与组分(iv)的沸点之间的沸点之间的差小于 60 K.