Abstract:
An anatomical mapping system including a plurality of mapping electrodes disposed in or near an anatomical structure and configured to detect activation signals of physiological activity, each of the plurality of mapping electrodes having an electrode location, and a processing system associated with the plurality of mapping electrodes, and configured to record the detected activation signals and associate one of the plurality of mapping electrodes with each recorded activation signal. The processing system further configured to determine a dominant frequency at each electrode location, and determine a wavefront vector at each electrode location based on a difference between the dominant frequency at a first electrode location and the dominant frequency at neighboring electrode locations.
Abstract:
A catheter adapted to determine a contact force, the catheter including a proximal segment, a distal segment, and an elastic segment extending from the proximal segment to the distal segment. The distal segment includes a plurality of tip electrodes including at least three radial electrodes disposed about a circumference of the distal segment. The radial electrodes are configured to output electrical signals indicative of a contact vector of the contact force. The elastic segment includes a force sensing device configured to output an electrical signal indicative of a magnitude of an axial component of the contact force, wherein the contact force is determined by scaling the magnitude of the axial component of the contact force by the contact vector.
Abstract:
Medical devices and methods for making and using medical devices are disclosed. A method of mapping electrical activity of a heart may comprise sensing a plurality of signals with a plurality of electrodes positioned within the heart. The method may further comprise separating the plurality of signals into a first group of signals and a second group of signals, and generating a data set that includes at least one known data point and one or more unknown data points. In some examples, the at least one known data point is generated based on the first group of signals.
Abstract:
A method for mapping a cardiac chamber includes sensing activation signals of intrinsic physiological activity with a plurality of electrodes disposed in or near the cardiac chamber, the activation signals including a near-field activation signal component and a far-field activation signal component, isolating R-wave events in the activation signals, generating a far-field activation template representative of the far-field activation signal component based on the R-wave events, and filtering the far-field activation template from the activation signals to identify the near-field activation signal components in the activation signals.
Abstract:
An anatomical mapping system includes a plurality of mapping electrodes each having an electrode location and configured to detect activation signals of intrinsic physiological activity within an anatomical structure. A mapping processor is associated with the plurality of mapping electrodes and is configured to record the detected activation signals and associate one of the plurality of mapping electrodes with each recorded activation signal. The mapping processor is further configured to analyze the recorded activation signals to identify at least one recurring pattern based on a relationship between a timing of the detected activation signals and the electrode locations of the mapping electrode associated with each detected activation signal.
Abstract:
Medical devices and methods for making and using medical devices are disclosed. An example medical device may include a system for mapping the electrical activity of the heart. The system may include a catheter shaft with a plurality of electrodes. The system may also include a processor. The processor may be capable of collecting a set of signals from at least one of the plurality of electrodes. The set of signals may be collected over a time period. The processor may also be capable of calculating at least one propagation vector from the set of signals, generating a data set from the at least one propagation vector, generating a statistical distribution of the data set and generating a visual representation of the statistical distribution.
Abstract:
A catheter system includes a mapping catheter including a plurality of mapping electrodes, each mapping electrode configured to sense signals associated with an anatomical structure. The catheter system further includes a processor operatively coupled to the plurality of mapping electrodes and configured to receive the signals sensed by the plurality of mapping electrodes, characterize the signals sensed by the plurality of mapping electrodes based on amplitudes of the sensed signals, and generate an output of a quality of contact of the plurality of mapping electrodes with the anatomical structure based on the signal characterization.
Abstract:
A catheter system includes a mapping catheter having a plurality of splines, each of the plurality of splines including a plurality of mapping electrodes. The system further includes a processor operatively coupled to the plurality of mapping electrodes and configured to receive signals sensed by the plurality of mapping electrodes. The processor is further configured to estimate an interspline distance between adjacent splines in the plurality of splines based on the signals sensed by the mapping electrodes on the adjacent splines.
Abstract:
Electrical activity propagation along an electrode array within a cardiac chamber is reconstructed. Signals from the electrode array are sampled, and the signals are plotted in multi-dimensional space with each axis corresponding to a channel in the electrode array. A covariance matrix of the plotted signals is decomposed to characterize the spread of a data cloud of the signals in the multi-dimensional space. The data cloud is then decorrelated, such as through whitening, to suppress excursions along correlated directions (global activation) and enhance excursions along each axis (local activation).
Abstract:
Electrical activity propagation along an electrode array within a cardiac chamber is reconstructed. Signals are sampled from the electrode array and the signals are plotted in multi-dimensional space with each axis corresponding to a channel in the electrode array. An excursion direction of global activation in the multi-dimensional space is estimated and a change in vectors of the sampled signals over time is determined. Signals with vectors that change over time in the excursion direction are suppressed.