摘要:
The pressure sensor is integrated in an SOI (Silicon-on-Insulator) substrate using the insulating layer as a sacrificial layer, which is partly removed by chemical etching to form the diaphragm. To fabricate the sensor, after forming the piezoresistive elements and the electronic components integrated in the same chip, trenches are formed in the upper wafer of the substrate and extending from the surface to the layer of insulating material; the layer of insulating material is chemically etched through the trenches to form an opening beneath the diaphragm; and a dielectric layer is deposited to outwardly close the trenches and the opening. Thus, the process is greatly simplified, and numerous packaging problems eliminated.
摘要:
The acceleration sensor is formed in a monocrystalline silicon wafer forming part of a dedicated SOI substrate presenting a first and second monocrystalline silicon wafer separated by an insulting layer having an air gap. A well is formed in the second wafer over the air gap and is subsequently trenched up to the air gap to release the monocrystalline silicon mass forming the movable mass of the sensor; the movable mass has two numbers of movable electrodes facing respective pluralities of fixed electrodes. In the idle condition, each movable electrode is separated by different distances from the two fixed electrodes facing the movable electrode.
摘要:
The chemoresistive gas sensor comprises a heating element integrated in a dedicated SOI substrate having an air gap in the intermediate oxide layer between two wafers of monocrystalline silicon. A sensitive element of tin oxide is formed over the heating element and separated from it by a dielectric insulating and protective layer. A trench formed at the end of the fabrication of the device, extends from the surface of the wafer in which the heating element is integrated, up to the air gap to mechanically separate and insulate the sensitive element from the rest of the chip, thereby improving the mechanical characteristics sensitivity and response of the sensor.
摘要:
The acceleration sensor is formed in a monocrystalline silicon wafer forming part of a dedicated SOI substrate presenting a first and second monocrystalline silicon wafer separated by an insulting layer having an air gap. A well is formed in the second wafer over the air gap and is subsequently trenched up to the air gap to release the monocrystalline silicon mass forming the movable mass of the sensor; the movable mass has two numbers of movable electrodes facing respective pluralities of fixed electrodes. In the idle condition, each movable electrode is separated by different distances from the two fixed electrodes facing the movable electrode.
摘要:
A bi-dimensional position sensor that can be advantageously used in the turn system controlled from the steering wheel of a vehicle. The sensor includes a permanent magnet fixed to a control lever so as to move in a plane along first and second directions and to rotate about a third direction orthogonal to the preceding ones. The permanent magnet is movable with respect to an integrated device including a first group of sensor elements arranged spaced along the first direction, a second group of sensor elements arranged spaced along the second direction and a third group of sensor elements detecting the angular position of the permanent magnet. Electronics integrated with the sensor elements generate a code associated with each position which the permanent magnet may assume and generate a control signal corresponding to the desired function.
摘要:
The method inlcudes the steps of forming a sacrificial buried region of insulating material on a substrate of monocrystalline semiconductor material, epitaxially growing a first semiconductor material layer on the substrate, the first semiconductor material layer including a polycrystalline region over the sacrificial buried region and a monocrystalline region elsewhere, the substrate and the semiconductor material layer surrounding the sacrificial buried region on all sides, and removing the sacrificial buried region. The portion of the polycrystalline region surrounded by the trench thus forms a suspended structure separated and isolated thermally from the rest of the semiconductor material layer. Using microelectronics processes, electronic components are formed in the monocrystalline region, and dedicated regions are formed at the suspended structure, so that the electronic components are integrated in the same chip with static, kinematic or dynamic microstructures.
摘要:
The pressure sensor is integrated in an SOI (Silicon-on-Insulator) substrate using the insulating layer as a sacrificial layer, which is partly removed by chemical etching to form the diaphragm. To fabricate the sensor, after forming the piezoresistive elements and the electronic components integrated in the same chip, trenches are formed in the upper wafer of the substrate and extending from the surface to the layer of insulating material; the layer of insulating material is chemically etched through the trenches to form an opening beneath the diaphragm; and a dielectric layer is deposited to outwardly close the trenches and the opening. Thus, the process is greatly simplified, and numerous packaging problems eliminated.
摘要:
Method for manufacturing a semiconductor pressure sensor, wherein, in a silicon substrate, trenches are dug and delimit walls; a closing layer is epitaxially grown, that closes the trenches at the top and forms a suspended membrane; a heat treatment is performed so as to cause migration of the silicon of the walls and to form a closed cavity underneath the suspended membrane; and structures are formed for transducing the deflection of the suspended membrane into electrical signals.
摘要:
Zener diode with high stability in time and low noise for integrated circuits and provided in an epitaxial pocket insulated from the rest of a type N epitaxial layer grown on a substrate of type P semiconductor material. In said pocket are included a type N+ cathode region and a type P anode region enclosing it. The cathode region has a peripheral part surrounding a central part extending in the anode region less deeply than the peripheral part.
摘要:
A buried-resistance semiconductor device is constructed by forming a P-type monocrystalline silicon substrate on which an epitaxial layer of silicon doped with type N impurities is grown, a portion of the epitaxial layer being insulated by a P-type insulating region extending from the substrate to the surface of the epitaxial layer. Two suitably-spaced terminals are secured to the surface of the epitaxial layer in the area bounded by the insulating region. Two separation regions extending into the surface layer are formed in the part of the epitaxial layer between the terminals, and a buried region extends from the substrate between the separation regions without being in contact with them. The three regions are of P-type material, and have an elongated shape and are bounded at the ends by the insulating region.