摘要:
A transistor which includes halo regions disposed in a substrate adjacent to opposing sides of the gate. The halo regions have upper and lower regions. The upper region is a crystalline region with excess vacancies and the lower region is an amorphous region. Source/drain diffusion regions are disposed in the halo regions. The source/drain diffusion regions overlap the upper and lower halo regions. This architecture offers the minimal extension resistance as well as minimum lateral diffusion for better CMOS device scaling.
摘要:
A transistor which includes halo regions disposed in a substrate adjacent to opposing sides of the gate. The halo regions have upper and lower regions. The upper region is a crystalline region with excess vacancies and the lower region is an amorphous region. Source/drain diffusion regions are disposed in the halo regions. The source/drain diffusion regions overlap the upper and lower halo regions. This architecture offers the minimal extension resistance as well as minimum lateral diffusion for better CMOS device scaling.
摘要:
A method for fabricating a semiconductor device is presented. The method includes providing a substrate and forming a gate stack over the substrate. A first laser processing to form vacancy rich regions within the substrate on opposing sides of the gate stack is performed. The vacancy rich regions have a first depth from a surface of the substrate. A first implant causing end of range defect regions to be formed on opposing sides of the gate stack at a second depth from the surface of the substrate is also carried out, wherein the first depth is proximate to the second depth.
摘要:
A method for forming a shallow junction region in a crystalline semiconductor substrate and method for fabricating a semiconductor device having the shallow junction region includes a defect engineering step in which first ions are introduced into a first region of the substrate and vacancies are generated in the first region. During the generation of substrate vacancies, the first region remains substantially crystalline. Interstitial species are generated in a second region and second ions are introduced into the second region to capture the interstitial species. Laser annealing is used to activate dopant species in the first region and repair implantation damage in the second region. The defect engineering process creates a vacancy-rich surface region in which source and drain extension regions having high dopant activation and low sheet resistance are created in an MOS device.
摘要:
A method for forming a shallow junction region in a crystalline semiconductor substrate and method for fabricating a semiconductor device having the shallow junction region includes a defect engineering step in which first ions are introduced into a first region of the substrate and vacancies are generated in the first region. During the generation of substrate vacancies, the first region remains substantially crystalline. Interstitial species are generated in a second region and second ions are introduced into the second region to capture the interstitial species. Laser annealing is used to activate dopant species in the first region and repair implantation damage in the second region. The defect engineering process creates a vacancy-rich surface region in which source and drain extension regions having high dopant activation and low sheet resistance are created in an MOS device.
摘要:
A method of forming a device is presented. The method includes providing a wafer having an active surface and dividing the wafer into a plurality of portions. The wafer is selectively processed by localized heating of a first of the plurality of portions. The wafer is then repeatedly selectively processed by localized heating of a next of the plurality of portions until all plurality of portions have been selectively processed.
摘要:
Embodiments relate to a method for fabricating nano-wires in nano-devices, and more particularly to nano-device fabrication using end-of-range (EOR) defects. In one embodiment, a substrate with a surface crystalline layer over the substrate is provided and EOR defects are created in the surface crystalline layer. One or more fins with EOR defects embedded within is formed and oxidized to form one or more fully oxidized nano-wires with nano-crystals within the core of the nano-wire.
摘要:
There is provided a method for fabricating a semiconductor device comprising the formation of a first device in the first device region, the first device comprising first diffusion regions. A stressor layer covering the substrate in the first device region and the first device is subsequently formed, the stressor layer having a first stress value. A laser anneal to memorize at least a portion of the first stress value in the first device is carried out followed by an activation anneal after the laser anneal to activate dopants in the first diffusion regions.