摘要:
A fabrication method reduces the amount of discoloration on interlevel dielectric layers due to anti-reflective coatings (ARC). The invention utilizes a barrier layer, such as, silicon nitride (SiN) that prevents the anti-reflective coating from contacting the interlevel dielectric layer (ILD0). The anti-reflective coating can be silicon oxynitride (SiON) deposited by LPCVD or PECVD.
摘要:
A method of reducing contact size in an integrated circuit includes providing an insulating layer over a semiconductor substrate including a plurality of gate structures, creating an aperture extending through the insulating layer and having side walls, providing a spacer on the side walls of the aperture, and providing a contact in the aperture. The lateral sides of the contact abut the spacer. A contact structure is also disclosed in which a spacer separates a contact from a gate structure to avoid charge gain or loss between the contact and gate structure.
摘要:
A method of forming spacers in an integrated circuit is disclosed herein. The method includes providing a gate structure over a semiconductor substrate, depositing a spacer material adjacent lateral sides of the gate structure, and etching the spacer material to form spacers. The spacers have minimal surface area exposed to direct sputter.
摘要:
A process for fabricating an MNOS device includes the steps of forming a hardmask containing at least first and second openings over a core array area of a semiconductor substrate. An angle doping process is carried out to form halo regions in precise locations within the substrate at the edges of the first and second openings in the hardmask. Another doping process is carried out to form buried bit-lines in the substrate using the hardmask as a doping mask. Once the halo regions and the buried bit-lines are formed, the hardmask is removed and a composite dielectric layer is formed overlying the substrate. A gate layer is deposited to overlie the composite dielectric layer, and an etching process is carried out to form a control gate electrode and a charge storage electrode in the MNOS device
摘要:
A graded cap layer that reduces the overall height of a layer stack and provides for increased process control during subsequent patterning of the layer stack, is described with a method of making the same. The graded cap layer is configured to function as a cap layer to prevent an underlying silicide layer from lifting, a barrier layer to prevent the underlying silicide layer from being oxidized during subsequent processes, a stop layer to prevent over-etching during subsequent self-aligned source (SAS) patterning processes, and/or an anti-reflective coating (ARC) to improve the resolution of subsequent patterning processes. The graded cap layer is a relatively thin layer of silicon oxynitride with varying concentrations of nitrogen. The cap layer is deposited in a single chemical vapor deposition (CVD) or plasma enhanced chemical vapor deposition (PECVD) chamber.
摘要:
A graded cap layer that reduces the overall height of a layer stack and provides for increased process control during subsequent patterning of the layer stack, is described with a method of making the same. The graded cap layer is configured to function as a cap layer to prevent an underlying silicide layer from lifting, a barrier layer to prevent the underlying silicide layer from being oxidized during subsequent processes, a stop layer to prevent over-etching during subsequent self-aligned source (SAS) patterning processes, and/or an anti-reflective coating (ARC) to improve the resolution of subsequent patterning processes. The graded cap layer is a relatively thin layer of silicon oxynitride with varying concentrations of nitrogen. The cap layer is deposited in a single chemical vapor deposition (CVD) or plasma enhanced chemical vapor deposition (PECVD) chamber.
摘要:
An article and method of manufacturing a semiconductor flash cell. The method includes producing an isolation formation layer on a silicon substrate, forming an oxide on the isolation formation layer, growing a tunnel oxide layer thereon, depositing a first poly silicon layer, masking and etching the first poly silicon layer, depositing a second poly silicon layer and performing a blanket etch back step, forming an oxide/nitride/oxide layer forming a third poly-silicon layer and depositing a silicide layer thereon.
摘要:
An integrated circuit is designed to reduce charge gain and charge loss in a flash memory or flash programmable read-only memory. Charge gain and loss caused by moisture or hydrogen diffusion or alternately small contact-to-floating gate distance is reduced by a capping layer disposed over a gate stack and a base layer of the flash memory. The capping layer includes a buffer layer, a first insulative layer, and a second insulative layer. The etch characteristics of at least the first and second insulative layer differs from an interlevel dielectric to control the dimensions of a contact extending through the interlevel dielectric and the capping layer to the base layer.
摘要:
A method is provided for forming a copper interconnect, the method including forming a sacrificial dielectric layer above a structure layer, forming an opening in the sacrificial dielectric layer and forming a copper layer above the sacrificial dielectric layer and in the opening. The method also includes forming the copper interconnect by removing portions of the copper layer above the sacrificial dielectric layer, leaving the copper interconnect in the opening. The method further includes removing the sacrificial dielectric layer above the structure and adjacent the copper interconnect, and forming a low dielectric constant dielectric layer above the structure and adjacent the copper interconnect.
摘要:
In a non-volatile semiconductor memory device, a top surface of a floating gate that is made of polysilicon is advantageously kept smooth to increase the uniformity of an overlying interpoly dielectric layer onto which a control gate is formed. The floating gate is doped after at least a portion of the overlying interpoly dielectric layer has been formed. Ion implantation techniques are employed to implant dopants through the overlying layer or layers and into the floating gate. Consequently, the potential for polysilicon grain growth at or near the top surface of the floating gate, which can lead to significant depressions in the overlying layers and data retention problems in the memory cell, is substantially reduced.