Abstract:
A high density ribbon cable connector includes bipartite strain relief halves adapted to trap between them a high density ribbon cable. The strain relief halves and ribbon are snap latchable into position within a fixture housing with the cable extending through an elongate slot in the fixture housing, and adjacent to a fixture face having conductor aligning grooves emanating from and fanning out in opposite directions from the elongate slot. The grooves form a template for the positioning of the conductors for accurate alignment prior to termination. The fixture housing also includes terminal clearance slots aligned with each groove, where two rows of clearance slots are provided on each side of the slot. The fixture housing is snap latchable into a terminal housing, where conductor receiving slots of electrical terminals are inserted into the terminal clearance slots, and electrically terminate the conductors to the electrical terminals.
Abstract:
A high density connector for electrically connecting a high density cable to a matable electrical connector has a housing with a plurality of terminals provided therein. The terminals have sharp outer edges which enable the terminals to cooperate with a portion of the connector to provide the securing force required to retain the terminal in position. The positioning of the terminals in the housing is accurately controlled through the use of an alignment tool which is manufactured from a material which does not expand or contract when exposed to various environmental conditions. Therefore, the precise positioning of the terminals is guaranteed and is repeatable for many connectors.
Abstract:
An electrical connector (2) has a series of terminals (14) which extend from a first surface (78) to a second surface (60). The terminals (14) have a cable terminating sections (16) provided proximate the first surface (78), and board engagement sections (20) provided proximate the second surface (60). Transition sections are provided between the cable terminating sections (16) and the board terminating sections (20). The transition sections are provided to compensate for the different centerline spacing of sections (16, 20). The transition sections have shoulders (26) provided thereon, the shoulders (26) cooperate with retention surfaces (68) of the connector (2) to insure that the terminals (14) are maintained in accurate alignment.
Abstract:
Fully shielded electrical connector for shielded cable comprises a terminal housing, upper and lower ground shields and upper and lower insulative cover parts. Lower shield has a pair of wings extending forward from respective sidewalls thereof through the housing. Each wing has a flange lying against the respective housing sidewall and a resilient tongue which extends beyond the sidewall for engaging the flange on the wing in a complementary connector. Parts are designed for ease of assembly without special tools. Lower ground shield has flanges flanking cable receiving opening in rear wall which fit flushly in cable receiving opening in rear wall of lower cover inserter member has cable receiving aperture therethrough which opens in dovetail slot which engages dovetail flanges on rear wall of lower housing to prevent overstressing openings in lower shield and housing when cable with contact ferrule is inserted therein.
Abstract:
Zero insertion force connector has a housing containing contact terminals which are moved into, and out of, engagement with terminal pads on circuit board by cams. The terminals have end portions which partially surround the cams and which are remote from the locations at which the terminals are gripped in the housing. The cams can be actuated with reduced forces by virtue of the long lever arms of the terminals.
Abstract:
An electrical connector applies a pressure connection of a flat cable to an LCD or other substrate, especially one of fragile construction. A clamping bar is biased by a restricted width housing to apply evenly distributed clamping pressure along a flat cable and LCD which previously has been fully assembled into the clamping bar.
Abstract:
An improved transistor, an improved lead frame for use in transistor manufacture, and manufacturing methods for transistors are disclosed. The improved transistor lead frame has a premolded housing thereon which covers a substantial portion of the chip-mounting surface of the transistor heat sink. A chip-receiving cavity is provided in the molded housing which extends to the chip-receiving surface and conforms to the shape of the chip. Solder-receiving bays or bins extend laterally from the cavity to receive excess solder during bonding of the chip to the lead frame. The premolded housing surrounds the chip after it is bonded to the lead frame and when the conductors from the transistor leads to the chip are bonded in place, the housing protects these leads during subsequent handling. The hollow interior of the housing is filled with a silicone gel which encapsulates the conductors in the housing and a harder insulating material, such as epoxy, is applied over the gel.
Abstract:
Zero insertion and extraction force connector clip for connecting conductors on a thin film to conductors on a circuit board comprises a one-piece stamped and formed member having a rectangular clip bar and means at each of its ends for mounting the clip on a circuit board in straddling relationship to the circuit board conductors. A plurality of contact springs extend from one edge of the clip bar. Each spring is reversely bent at the one edge and has a spring arm portion extending obliquely underneath the clip bar so that when the clip is mounted on the circuit board, contact portions of the springs will be against the circuit board conductors. The ends of the springs have toolengageable portions which can be engaged by a uniquely suited tool. The tool functions to raise the springs from the circuit board so that the film can be inserted between, and extracted from, the circuit board and the springs with zero force on the film conductors.
Abstract:
A high density ribbon cable connector includes bipartite strain relief halves adapted to trap between them a high density ribbon cable. The strain relief halves and ribbon are snap latchable into position within a fixture housing with the cable extending through an elongate slot in the fixture housing, and adjacent to a fixture face having conductor aligning grooves emanating from and faning out in opposite directions from the elongate slot. The grooves form a template for the positioning of the conductors for accurate alignment prior to termination. The fixture housing also includes terminal clearance slots aligned with each groove, where two rows of clearance slots are provided on each side of the slot. The fixture housing is snap latchable into a terminal housing, where conductor receiving slots of electrical terminals are inserted into the terminal clearance slots, and electrically terminate the conductors to the electrical terminals.
Abstract:
A method of producing a plurality of electrical terminals (28) which are in the form of a continuous strip is disclosed. At least one web of insulation material (20) is molded over the terminals (28), so that the insulation material (20) completely surrounds and tightly engages each terminal (28). This method insures that the terminals (28) will be accurately and precisely maintained in position by the insulation material (10). Consequently, the web of insulation material (10) can act as a carrier strip as other operations are performed on terminals (28).