摘要:
A method of increasing retention, survival and proliferation of transplanted cells in diseased or damaged tissue types or organ by providing transplanted cells with autologously-derived platelet cells and forming a autologously-derived platelet gel prior or during administration to the tissue type or organ through a delivery device and immobilizing the transplanted cells in the tissue type or organ system.
摘要:
The instant invention provides a method for improving efficiency of RNA delivery to cells. The method comprises applying a low strength electric field to the cells and then after a certain time period, administering the ribonucleic acid sequence to the cells. Devices, kits, and RNA molecules suitable for delivery and devices suitable for practicing the disclosed methods are also provided.
摘要:
Improved operating system architecture for an implantable medical device incorporating adiabatic clock-powered logic alone or in conjunction with conventional clocked logic or self-timed logic for reducing power consumption and increasing and improving processing capabilities is disclosed. The adiabatic clock-powered logic is employed to implement digital signal processors (DSPs) including analog to digital (ADC) signal converters, a state machine or the components of microprocessor cores, e.g., the CPU, arithmetic logic units (ALU), on-chip RAM and ROM and data and control buses, and other logic units, e.g., additional RAM and ROM, a direct memory address (DMA) controller, a block mover/reader, a cyclic redundancy code (CRC) calculator, and certain uplink and downlink telemetry signal processing stages. The adiabatic clocked CMOS logic is incorporated into the same IC or ICs with clocked CMOS logic and provides manufacturing economies.
摘要:
Improved operating system architecture for an implantable medical device incorporating self-timed logic for reducing power consumption and increasing and improving processing capabilities is disclosed. The self-timed logic is employed to implement digital signal processors (DSPs) including analog to digital (ADC) signal converters, a state machine or the components of microprocessor cores, e.g., the CPU, arithmetic logic units (ALU), on-chip RAM and ROM and data and control buses, and other logic units, e.g., additional RAM and ROM, a direct memory address (DMA) controller, a block mover/reader, a cyclic redundancy code (CRC) calculator, and certain uplink and downlink telemetry signal processing stages. The self-timed CMOS logic is incorporated into the same IC or ICs with clocked CMOS logic in a manner that minimizes the size of the clock tree serving the clocked CMOS logic, allows for efficient allocation of chip real estate, and provides manufacturing economies.
摘要:
In some examples, the disclosure relates to a systems, devices, and techniques for delivering electrical stimulation therapy to a patient. In one example, the disclosure relates to a method including delivering a series of pulses with alternating pulse polarities to a gastrointestinal tract of a patient. The series of pulses includes at least a first pulse of a first polarity, a second pulse of a second polarity, and a third pulse of the first polarity, where the first, second and third pulses are delivered in direct succession and in that order. The first and second pulses are separated by a first time delay and the second and third pulses are separated by a second time delay. In some examples, each of the first and second time delays depend on the frequency that the series of pulses are delivered.
摘要:
The operation of an implantable medical device executing at least one set of firmware code is modified using a hardware/firmware trap at a point of execution of the set of firmware code. A patch code for directing the implantable medical device to perform a particular task is provided for execution when the trap generates an interrupt. The operation thereafter returns to the point of execution of the set of firmware code where the interrupt was generated and execution of the set of firmware code continues in a normal manner.
摘要:
A system for minimizing power dissipation within an implantable medical device through use of adiabatic logic is disclosed. The system includes a first and a second sub-circuit of the implantable medical device. An electrical connection interconnects the first and the second sub-circuits, the electrical connection including a capacitive element. Circuitry, which charges the capacitive element of the electrical connection to generate a ramp logic signal, is connected to the capacitive element. The ramp logic signal includes a frequency of less than 500 kilohertz, thereby creating a low frequency, low power system which reduces energy dissipation to the surrounding environment.
摘要:
A method and an apparatus for a hardware/firmware trap. At least one set of a firmware code is executed for operation of the device. Modification to the operation of the device is performed. The modification to the operation comprises: receiving a patch code; creating a firmware trap; generating an interrupt in response to the firmware trap; and executing the patch code in response to the interrupt.
摘要:
A method or apparatus for conserving power in an implantable medical device (IMD) of the type having at least one IC powered by a battery wherein, in each such IC, a voltage dependent oscillator for providing oscillator output signals at an oscillation frequency dependent upon applied supply voltage to the IC is incorporated into the IC. The voltage dependent oscillator oscillates at a frequency that is characteristic of the switching speed of all logic circuitry on the IC die that can be attained with the applied supply voltage. The applied supply voltage is regulated so that the oscillation frequency is maintained at no less than a target or desired oscillation frequency or within a desired oscillation frequency range. The power supply voltage that is applied to the IC is based directly on the performance of all logic circuitry of the IC. In order to provide the comparison function, the oscillator output signals are counted, and the oscillator output signal count accumulated over a predetermined number of system clock signals is compared to a target count that is correlated to the desired oscillation frequency. The counts are compared, and the supply voltage is adjusted upward or downward or is maintained the same dependent upon whether the oscillator output signal count falls below or rises above or is equal to the target count, respectively. The supply voltage adjustment is preferably achieved employing a digitally controlled power supply by calculating a digital voltage from the comparison of the oscillator output signal count to the target count, and storing the digital voltage in a register of the power supply.
摘要:
A cyclic redundancy code (CRC) and optionally a syndrome value calculation of one or more implantable medical device (IMD) data block is conducted by block mover/reader hardware of the IMD when the data block(s) are moved and/or read. In the block read operation, each data byte or word in the block mover data register is read in a first clock cycle. In the block move operation, each data byte is read in the first clock cycle in this way and then moved to a destination register in a second clock cycle. The data CRC and optionally the syndrome value accumulate in the CRC and syndrome registers as all data bytes of the data block(s) are read in the first clock cycle. When the last data byte or word of the data block(s) is sequentially read (and moved in the block move operation), the accumulated data CRC and syndrome value are either stored as the associated data CRC and optional syndrome value or are used for comparison with a previously stored data CRC and optional syndrome value associated with the data block(s) in the comparison operation to determine if the data block(s) is corrupted.