摘要:
A corrosion resistant coating for engine components such as turbine disks, turbine seal elements and turbine shafts. This coating may also find application to other turbine components that are subjected to high temperatures and corrosive environments, such as turbine components located within or on the boundary of the gas fluid flow path, including for example turbine blades, turbine vanes, liners and exhaust flaps. The corrosion resistant coating of the present invention in service on a gas turbine component includes a glassy ceramic matrix wherein the glassy matrix is silica-based and particles selected from the group consisting of refractory oxide particles, MCrAlX particles and combinations of these particles, substantially uniformly distributed within the matrix. The refractory oxide and/or the MCrAlX provides the coating with corrosion resistance. Importantly the coating of the present invention has a coefficient of thermal expansion (CTE) greater than alumina. The CTE of the coating is sufficiently close to the substrate material, that is, the component to which it is applied, such that the coating does not spall after frequent engine cycling at elevated temperature
摘要:
A composition comprising a liquid mixture having: a corrosion resistant metal particulate component comprising aluminum-containing metal particulates, wherein the aluminum-containing metal particulates have a phosphate and/or silica-containing insulating layer; a glass-forming binder component; and a liquid carrier component. Also disclosed is a method comprising the following steps: (a) providing an article comprising a metal substrate; (b) imparting to the metal substrate an electrical charge; and (c) electrostatically applying a liquid coating composition to the electrically charged metal substrate, wherein the liquid coating composition comprises a liquid mixture having: a corrosion resistant metal particulate component comprising aluminum-containing metal particulates having a phosphate and/or silica-containing insulating layer; glass-forming binder component; and a liquid carrier component.
摘要:
In accordance with an embodiment of the invention, a thermal barrier coating (TBC) for inclusion in a thermal barrier coating/environmental barrier coating system (TBC/EBC system) for use on a silicon containing material substrate is provided. The TBC comprises a compound having a primary constituent portion and a stabilizer portion stabilizing said primary constituent. The primary constituent portion of the TBC comprises hafnia present in an amount of at least about 5 mol % of the primary constituent. The stabilizer portion of said thermal barrier coating comprises at least one metal oxide comprised of cations with a +2 or +3 valence present in the amount of about 10 to about 40 mol % of the thermal barrier coating.
摘要:
According to an embodiment of the invention, an article of manufacture for use in a gas turbine engine is disclosed. The article comprises a part having a surface covered with a ceramic thermal barrier coating. The thermal barrier coating has an outer surface covered with a sacrificial phosphate coating, wherein the sacrificial phosphate coating reacts with contaminant compositions to prevent contaminant infiltration into the thermal barrier coating.
摘要:
A protective coating for use on a silicon-containing substrate, and deposition methods therefor. The coating has a strontium-aluminosilicate (SAS) composition that is less susceptible to degradation by volatilization and in corrosive environments as a result of having at least an outer surface region that consists essentially of one or more stoichiometric crystalline phases of SAS and is substantially free of a nonstoichiometric second crystalline phase of SAS that contains a substoichiometric amount of silica. The coating can be produced by carrying out deposition and heat treatment steps that result in the entire coating or just the outer surface region of the coating consisting essentially of the stoichiometric celsian phase.
摘要:
A thermal barrier coating (TBC) for a component intended for use in a hostile environment, such as a component of a gas turbine engine. The TBC exhibits improved impact and erosion resistance as a result of being a composite material consisting essentially of particles of a ceramic reinforcement material dispersed in a ceramic matrix material. The ceramic reinforcement material has a yield strength greater than the ceramic matrix material at about 1100° C., and the particles of the ceramic reinforcement material have an average maximum dimension of greater than five micrometers.
摘要:
An article comprising a silicon-containing substrate, a silicide-containing bond coat layer overlying the substrate, and typically an environmental barrier coating overlaying the bond coat layer. An article is also provided wherein the environmental barrier coating comprises: (1) an optional inner silica scale layer overlaying the bond coat layer; (2) intermediate layer overlaying the inner silica scale layer, or the bond coat layer in the absence of the inner silica scale layer, and comprising mullite, or a combination of mullite with a barium strontium aluminosilicate, a yttrium silicate, or a calcium aluminosilicate; and (3) an outer steam-resistant barrier layer overlaying the intermediate layer and consisting essentially of an alkaline earth silicate/aluminosilicate. Processes are also provided for forming the silicide-containing bond coat layer over the substrate, followed by forming the environmental barrier coating over the bond coat layer.
摘要:
An article comprising a silicon-containing substrate, a steam-resistant barrier coating overlaying the substrate, wherein the steam-resistant barrier coating comprises an outer barrier layer consisting essentially of an alkaline earth aluminate/aluminosilicate, and a corrosion resistant metal silicate protective layer overlaying and adjacent to the outer barrier layer. A process is also provided for forming on the outer barrier layer the corrosion resistant metal silicate protective layer.
摘要:
Thermal barrier coating (TBC) and a method of depositing a TBC having a modulated columnar microstructure that exhibits increased impact resistance. The TBC is deposited to have a columnar microstructure in which columns extend from a substrate surface. The columns having inner regions contacting the surface, outer regions near an outermost surface of the TBC, and interior regions therebetween. The inner regions of the columns are substantially normal to the substrate surface and at least one of the interior and outer regions of the columns are nonaligned with its respective inner regions, so that the columns of the columnar microstructure are continuous but modulated between the inner and outer regions to reduce tensile stresses within the columns resulting from particle impact.
摘要:
A protective coating for use on a silicon-containing substrate, and deposition methods therefor. The coating has a barium-strontium-aluminosilicate (BSAS) composition that is less susceptible to degradation by volatilization and in corrosive environments as a result of having at least an outer surface region that consists essentially of one or more stoichiometric crystalline phases of BSAS and is substantially free of a nonstoichiometric second crystalline phase of BSAS that contains a substoichiometric amount of silica. The coating can be produced by carrying out deposition and heat treatment steps that result in the entire coating or just the outer surface region of the coating consisting essentially of the stoichiometric celsian phase.