摘要:
A system of interface circuits (15, 20-1 through 20-N) includes a mode sensing circuit (15) and one or more output circuits (20-1 through 20-N). The mode sensing circuit is arranged for producing control signals (on leads 22, 24) in response to an input signal (on lead 21). The output circuit (34-1) is arranged for producing an output data signal (DQ-1) dependent upon an input data signal (DATA) when the input signal (on lead 21) is in a first state and dependent upon the input data signal and the configuration of the connected output circuit (34-1) when the input signal is in a second state.
摘要:
A clock circuit including an input terminal (300) for receiving a clock signal and a first pulse generator (302) coupled to the input terminal. The first pulse generator is operable to generate a voltage pulse in response to a logic-low voltage to logic-high voltage transition of the clock signal. The circuit also includes a second pulse generator (304) coupled to the input terminal, the second pulse generator being operable to generate a voltage pulse in response to a logic-high voltage to logic-low voltage transition of the clock signal. A first clock deskewing circuit (306) is coupled between the first pulse generator and a first clock signal output terminal and a second clock deskewing circuit (308) is coupled between the second pulse generator and a second clock signal output terminal. The circuit may also include an OR logic circuit (310) coupled to the first and second clock signal output terminals, and a third pulse generator (312) coupled to the OR logic circuit, the third pulse generator having a third clock signal output terminal (314).
摘要:
Testing of an integrated circuit having arrays of memory cells occurs by writing to all of the arrays at the same time. Normal writing occurs only to one array. Additional test data bus leads on the chip carry test data signals from selected arrays to comparison circuits. The outputs of the comparison circuits flow to the output circuits of the chip. This achieves writing test data to four times the number of arrays as in a normal write and reading test data from twice the number of arrays as in a normal read operation.
摘要:
A semiconductor memory device (300) having a parallel test circuit is disclosed. A test data path receives parallel I/O line (I/O0-I/O7) values, and generates therefrom test result data values (PASS and DATA_TST). The test result data values (PASS and DATA_TST) are coupled to a two-bit register (312) and output in a sequential fashion to an open drain output driver (314). In this manner, test result data values are provided by driving an output (DQ) in a rapid sequential fashion, rather than placing the output at one of three states (such as logic high state, a logic low state, or a high impedance state).
摘要:
A semiconductor memory device (300) having a parallel test circuit is disclosed. A test data path (308) receives parallel I/O line (I/O0-I/O7) values, and generates therefrom test result data values (PASS and DATA_TST). The test result data values (PASS and DATA_TST) are coupled to a gate control circuit (312). The gate control circuit (312) provides either a first logic value, a second logic value, or an intermediate logic value to an open drain output driver (314) depending upon the test result data values (PASS and DATA_TST). In response to the logic values received from the gate control circuit (312), the open drain output driver (314) drives a data output (DQ) to a first, second or intermediate logic level.
摘要:
A semiconductor memory (300) device having a redundancy test scheme is disclosed. A memory cell array (310) includes a normal section (312) and a redundant section (314, 316, and 318) of memory cells. In a normal mode of operation, the redundant section is selected if an applied address (ADD) corresponds to a defective bit in the normal section. In a redundant test mode of operation, the redundant section is selected based on a redundant test address (DFTRA, DFTCA). If the redundant test address is in the normal select logic level, a normal decode section (306 and 324) is selected. The redundant test address and a redundant test activation signal are applied to a redundant decoder (500). If the redundant test address is in a redundant select logic level and the redundant test activation signal is active, the redundant decoder is selectable based on the applied address value.
摘要:
A random access memory (RAM) (700) is disclosed which includes a reduced page size for decreasing power consumption, and a unique input/output (I/O) arrangement for maintaining a relatively large I/O space, without substantially increasing the number of I/O lines within the RAM. The RAM (700) includes a number banks (704) each of which is logically divided into even array sections and odd array sections (900). Data from the array sections (900) is coupled to I/O select blocks (914, 916, 918, 920) by groups of local I/O lines (902, 904, 906, 908). According to an applied address, the sense amplifiers within the even array sections are activated, indicating an "even" sense cycle, or the sense amplifiers within the odd array sections are activated, indicating an "odd" sense cycle. In an even sense cycle, the I/O select blocks (914, 916, 918, 920) couple the LIO line groups of the even array sections (900) to global I/O lines (910, 912). In an odd sense cycle, the I/O select blocks (914, 916, 918, 920) couple the LIO lines groups of the odd array sections (900) to global I/O lines (910, 912).
摘要:
A method for storing a temperature threshold in an integrated circuit includes measuring operating parameters of the integrated circuit versus temperature, calculating a maximum temperature at which the integrated circuit performance exceeds predetermined specifications and storing parameters corresponding to the maximum temperature in a comparison circuit in the integrated circuit by selectively blowing fusable devices in the comparison circuit. The fusable devices may be antifuses.
摘要:
A semiconductor memory device (300) having a parallel test circuit is disclosed. A test data path (308) receives parallel I/O line (I/O0-I/O7) values, and generates therefrom test result data values (PASS and DATA_TST). The test result data values (PASS and DATA_TST) are coupled to a gate control circuit (312). The gate control circuit (312) provides either a first logic value, a second logic value, or an intermediate logic value to an open drain output driver (314) depending upon the test result data values (PASS and DATA_TST). In response to the logic values received from the gate control circuit (312), the open drain output driver (314) drives a data output (DQ) to a first, second or intermediate logic level.
摘要:
A method for storing a temperature threshold in an integrated circuit includes measuring operating parameters of the integrated circuit versus temperature, calculating a maximum temperature at which the integrated circuit performance exceeds predetermined specifications and storing parameters corresponding to the maximum temperature in a comparison circuit in the integrated circuit by selectively blowing fusable devices in the comparison circuit. The fusable devices may be antifuses. As a result, the integrated circuit is able to provide signals to devices external to the integrated circuit to indicate that the integrated circuit may be too hot to operate properly.