摘要:
Field effect transistor with increased charge carrier mobility due to stress in the current channel 22. The stress is in the direction of current flow (longitudinal). In PFET device, the stress is compressive; in NFET devices, the stress is tensile. The stress is created by a compressive film 34 in an area 32 under the channel. The compressive film pushes up on the channel 22, causing it to bend. In PFET devices, the compressive film is disposed under ends 31 of the channel (e.g. under the source and drain), thereby causing compression in an upper portion 22A of the channel. In NFET devices, the compressive film is disposed under a middle portion 40 of the channel (e.g. under the gate), thereby causing tension in the, upper portion of the channel. Therefore, both NFET and PFET device can be enhanced. A method for making the devices is included.
摘要:
Field effect transistor with increased charge carrier mobility due to stress in the current channel 22. The stress is in the direction of current flow (longitudinal). In PFET devices, the stress is compressive; in NFET devices, the stress is tensile. The stress is created by a compressive film 34 in an area 32 under the channel. The compressive film pushes up on the channel 22, causing it to bend. In PFET devices, the compressive film is disposed under ends 31 of the channel (e.g. under the source and drain), thereby causing compression in an upper portion 22A of the channel. In NFET devices, the compressive film is disposed under a middle portion 40 of the channel (e.g. under the gate), thereby causing tension in the, upper portion of the channel. Therefore, both NFET and PFET devices can be enhanced. A method for making the devices is included.
摘要:
A substrate under tension and/or compression improves performance of devices fabricated therein. Tension and/or compression can be imposed on a substrate through selection of appropriate gate sidewall spacer material disposed above a device channel region wherein the spacers are formed adjacent both the gate and the substrate and impose forces on adjacent substrate areas. Another embodiment comprises compressive stresses imposed in the plane of the channel using SOI sidewall spacers made of polysilicon that is expanded by oxidation. The substrate areas under compression or tension exhibit charge mobility characteristics different from those of a non-stressed substrate. By controllably varying these stresses within NFET and PFET devices formed on a substrate, improvements in IC performance have been demonstrated.
摘要:
A substrate under tension and/or compression improves performance of devices fabricated therein. Tension and/or compression can be imposed on a substrate through selection of appropriate gate sidewall spacer material disposed above a device channel region wherein the spacers are formed adjacent both the gate and the substrate and impose forces on adjacent substrate areas. Another embodiment comprises compressive stresses imposed in the plane of the channel using SOI sidewall spacers made of polysilicon that is expanded by oxidation. The substrate areas under compression or tension exhibit charge mobility characteristics different from those of a non-stressed substrate. By controllably varying these stresses within NFET and PFET devices formed on a substrate, improvements in IC performance have been demonstrated.
摘要:
A substrate under tension and/or compression improves performance of devices fabricated therein. Tension and/or compression can be imposed on a substrate through selection of appropriate gate sidewall spacer material disposed above a device channel region wherein the spacers are formed adjacent both the gate and the substrate and impose forces on adjacent substrate areas. Another embodiment comprises compressive stresses imposed in the plane of the channel using SOI sidewall spacers made of polysilicon that is expanded by oxidation. The substrate areas under compression or tension exhibit charge mobility characteristics different from those of a non-stressed substrate. By controllably varying these stresses within NFET and PFET devices formed on a substrate, improvements in IC performance have been demonstrated.
摘要:
The present invention provides a device design and method for forming Field Effect Transistors (FETs) that have improved performance without negative impacts to device density. The present invention forms high-gain p-channel transistors by forming them on silicon islands where hole mobility has been increased. The hole mobility is increased by applying physical straining to the silicon islands. By straining the silicon islands, the hole mobility is increased resulting in increased device gain. This is accomplished without requiring an increase in the size of the devices, or the size of the contacts to the devices.
摘要:
The present invention provides a device design and method for forming Field Effect Transistors (FETs) that have improved performance without negative impacts to device density. The present invention forms high-gain p-channel transistors by forming them on silicon islands where hole mobility has been increased. The hole mobility is increased by applying physical straining to the silicon islands. By straining the silicon islands, the hole mobility is increased resulting in increased device gain. This is accomplished without requiring an increase in the size of the devices, or the size of the contacts to the devices.