Abstract:
Unity current gain impedance transformation at the input of a field effect transistor current mirror amplifier reduces the input impedance and renders it independent of the mirror ratio. A net saving of semiconductor material may be obtained for a given mirror ratio and input impedance when the transformation is provided by a common gate connected complementary field effect transistor meeting certain effective threshold voltage and forward transfer conductance ratio requirements.
Abstract:
A circuit comprising first and second current amplifiers connected in a regenerative feedback loop and which includes a starting circuit. The latter initiates current flow in the loop and is automatically disconnected from the loop once normal operating conditions are reached therein.
Abstract:
Feedback, derived from the rate-of-change of the output current of a current mirror amplifier, varies the mirror ratio as a function of the spectral content of the output current. The feedback is regenerative whereby the rate-of-change of the output current is enhanced. Selection of parameters of the mirror and output node provide optimal compensation for step function input currents.
Abstract:
A switch, connected in series with a current source across a source of operating voltage, is opened and closed in accordance with the ratio of two input signals to produce an output signal. The current source conducts an output current directly or inversely proportional to the sum of the input signals whereby a parameter of the switched output signal, such as slew rate, is proportional to a parameter of the input signals, such as common mode voltage.
Abstract:
Each one of two switching transistors, driven by complementary input signals, has its conduction path connected between a different one of two output terminals and a first point of potential. Connected between each output terminal and a second point of potential are the conduction paths of a load transistor responsive to the signal at the other output terminal, and an input signal responsive transistor. When the switching transistor connected to one output terminal is being turned on, the effective impedance of the input signal responsive transistor connected between that output and the second point of potential is increased, thereby increasing the speed of response of the circuit and minimizing its power dissipation.
Abstract:
A circuit, whose operating potential includes complementary pulsating signals, functions to produce quasi-static output signals which are virtually independent of the pulsations. An inverter circuit includes a first transistor connected between a first, fixed, operating voltage level and an output terminal and second and third transistors whose conduction paths are connected between the output terminal and, respectively, first and second sources of complementary pulsating signals whose voltages vary, in amplitude, between the first level and a second level. The same input signal is applied to the control electrodes of the second and third transistors whereby one of them always can, when turned on, clamp the output terminal to the second voltage level. The first transistor, when turned on, clamps the output to the first voltage level.
Abstract:
A cascade amplifier embodying the present invention includes a plurality of amplifier stages in direct-coupled cascade connection. During specified intervals interspersed with normal amplification equal potentials are imposed on the inverting and non-inverting terminals of the first amplifier stage. A direct-coupled feedback connection from the output port of the final amplifier stage to the input port of one of the amplifier stages succeeding the first includes a sample-and-hold circuit. This sample-and-hold circuit samples the signal level appearing at the output port of the final amplifier stage during said specified intervals and holds that level for the feedback connection during the intervening periods of normal amplification to provide continuing compensation against input offset potential error.
Abstract:
A current subtractor circuit utilizing a current mirror amplifier (CMA) as the subtracting element. An operational amplifier converts the difference current to an output voltage proportional to this difference. The operational amplifier additionally may be utilized to equalize the voltage drop across the conduction paths of the transistors comprising the CMA and to maintain the CMA output transistor in its constant current region of operation.
Abstract:
A first field-effect transistorized constant current supply provides a first relatively constant output current. A second field-effect transistorized constant current supply is cascaded with, and driven by, the first current to provide a more highly regulated second constant output current. The system is self-starting and latch free. The second output current may be employed to drive a current mirror with a plurality of output current paths.
Abstract:
Circuits for generating pulsating potentials and voltage levels outside the range of, and/or of greater magnitude than, the operating potential applied to the circuits. Each circuit includes first and second transistors for applying a first voltage to one plate of a capacitor and a second voltage to the other plate of the capacitor, during one time interval. During a subsequent time interval, the first and second transistors are turned off and a third transistor applies the second potential to the one plate of the capacitor. The change in the potential at the one plate of the capacitor is coupled to the other plate of the capacitor at which is produced an output potential outside the range of the first and second voltages. The potential difference between the first voltage and the output potential is greater in amplitude than the potential difference between the first and second voltages. The circuit may also include means alternately applying the first voltage and then the output potential to an output point for generating pulsating signals of greater amplitude than the magnitude of the applied potential. The outputs of two or more circuits may be combined to produce direct current (d.c.) levels. Also included are circuits which operate from a pulsating source of operating potential.