Abstract:
A process involves separating hydrogen that is produced from a reformer. Specifically, the products, which include hydrogen, CO2 and hydrocarbons, are added to a CaO bed. The CaO reacts with the CO2 to form CaCO3, thereby removing CO2 from the products. The remaining products (e.g., hydrocarbons and hydrogen) may be separated using a hydrogen-sensitive membrane. This membrane will produce a refined, purified supply of hydrogen gas.
Abstract:
An apparatus for cleaning and/or disinfecting surfaces and objects is disclosed herein. In one embodiment, such an apparatus includes a spray bottle that is refillable with water. A dispenser is integrated into the spray bottle to dispense a soluble material into the water to produce a solution. The soluble material includes at least one of a cleaning agent and a disinfecting agent. The soluble material is provided in a quantity sufficient to last several refills of the spray bottle.
Abstract:
A separator for an alkali metal ion rechargeable battery includes a porous ceramic alkali ion conductive membrane which is inert to liquid alkali ion solution as well as anode and cathode materials. The porous ceramic separator is structurally self-supporting and maintains its structural integrity at high temperature. The ceramic separator may have a thickness of at least 200 μm and a porosity in the range from 20% to 70%. The separator may be in the form of a clad composite separator structure in which one or more layers of porous and inert ceramic or polymer membrane materials are clad to the alkali ion conductive membrane. The porous and inert alkali ion conductive ceramic membrane may comprise a NaSICON-type, LiSICON-type, or beta alumina material.
Abstract:
A multi-stage sodium heat engine is provided to convert thermal energy to electrical energy, the multi-stage sodium heat engine including at least a first stage, a second stage, and an electrical circuit operatively connecting the first stage and the second stage with an electrical load. One or more methods of powering an electrical load using a multi-stage sodium heat engine are also described.
Abstract:
An apparatus for administering a therapeutic is provided. In various embodiments, the apparatus includes an ozone generator for producing therapeutic oxygen-ozone mixture. The generator includes an electrochemical cell configured to communicate with an accumulator having an anode, a cathode and a power supply in electrical communication with the anode and the cathode. The power supply is configured to create an electric current between the anode and the cathode such that water in the electrochemical cell electrolyzes to produce ozone and oxygen at the anode.
Abstract:
A process is disclosed for removing hydrogen gas that is produced during a DHA (dehydroaromatization) reaction that is used to produce benzene from methane. The hydrogen gas is reacted with a quantity of an alkali metal to produce an alkali metal hydride, which may be separated out from the benzene and any unreacted methane. This removal of the hydrogen gas “drives” the reaction to produce more benzene, thereby increasing the theoretical yield of the DHA reaction.
Abstract:
A molten sodium secondary cell charges at a high temperature and discharges at a relatively lower temperature. The cell includes a sodium anode and a cathode. A sodium ion conductive solid membrane separates the cathode from the sodium anode and selectively transports sodium ions. A solar energy source includes a photovoltaic system to provide an electric charging potential to the sodium anode and the cathode and a solar thermal concentrator to provide heat to the cathode and catholyte composition to cause the molten sodium secondary cell to charge at a temperature in the range from about 300 to 800° C. The cell has a charge temperature and a charge voltage and a discharge temperature and a discharge voltage. The charge temperature is substantially higher than the discharge temperature, and the charge voltage is lower than the discharge voltage.
Abstract:
A separator for an alkali metal ion rechargeable battery includes a porous ceramic alkali ion conductive membrane which is inert to liquid alkali ion solution as well as anode and cathode materials. The porous ceramic separator is structurally self-supporting and maintains its structural integrity at high temperature. The ceramic separator may have a thickness of at least 200 μm and a porosity in the range from 20% to 70%. The separator may be in the form of a clad composite separator structure in which one or more layers of porous and inert ceramic or polymer membrane materials are clad to the alkali ion conductive membrane. The porous and inert alkali ion conductive ceramic membrane may comprise a NaSICON-type, LiSICON-type, or beta alumina material.
Abstract:
An intermediate temperature molten sodium-metal halide rechargeable battery utilizes a molten eutectic mixture of sodium haloaluminate salts having a relatively low melting point that enables the battery to operate at substantially lower temperature compared to the traditional ZEBRA battery system and utilize a highly conductive NaSICON solid electrolyte membrane. The positive electrode comprises a mixture of NaX and MX, where X is a halogen selected from Cl, Br and I and M is a metal selected Ni, Fe, and Zn. The positive electrode is disposed in a mixed molten salt positive electrolyte comprising at least two salts that can be represented by the formula NaAlX′4-δX″δ, where 0
Abstract:
An apparatus for administering a therapeutic is provided. In various embodiments, the apparatus includes a syringe having a barrel and a plunger and having an ozone generator associated therewith. The generator is initiated and a therapeutic gas is accumulated within the barrel, at which point it can be delivered from the barrel into a target site via a needle, thereby delivering therapeutic effects to that target site.