Abstract:
Solid state light emitting devices include multiple LED components providing adjustable melatonin suppression effects. Multiple LED components may be operated simultaneously according to different operating modes according to which their combined output provides the same or similar chromaticity, but provides melatonin suppressing effects that differ by at least a predetermined threshold amount between the different operating modes. Switching between operating modes may be triggered by user input elements, timers/clocks, or sensors (e.g., photosensors). Chromaticity of combined output of multiple LED components may also be adjusted, together with providing adjustable melatonin suppression effects at each selected combined output chromaticity.
Abstract:
Solid state light sources, lighting devices and lamps arranged to provide emission with a warm temperature and high CRI. One embodiment of a solid state lighting device according to the present invention comprises a light emitting diode (LED) device capable of emitting light in an emission spectrum. A filter arranged so that at least some light from the LED light source passes through it, with the filter filtering at least some of one or more portions of the light source emission spectrum. The resulting light source light has a different temperature but substantially the same CRI after passing through the filter.
Abstract:
A lamp has an optically transmissive enclosure and a base. A tower extends from the base into the enclosure and supports an LED assembly in the enclosure. The LED assembly comprises a plurality of LEDs operable to emit light when energized through an electrical path from the base. The tower and the LED assembly are arranged such that the plurality of LEDs are disposed about the periphery of the tower in a band and face outwardly toward the enclosure to create a source of the light that appears as a glowing filament. The tower forms part of a heat sink that transmits heat from the LED assembly to the ambient environment. The LED assembly has a three-dimensional shape. An electrical interconnect connects a conductor to the heat sink where the conductor is in the electrical path between the LED assembly and the base.
Abstract:
A lighting device includes an electrically activated emitter, a lumiphoric material spatially segregated from the emitter, and an optical element arranged between the emitter and the lumiphoric material, wherein at least a portion of the optical element is curved or includes a non-planar shape. The optical element may include a reflective material disposed proximate to at least one peripheral edge and/or may include at least one peripheral edge that is non-perpendicular to a face of the optical element and arranged to reflect light in a direction toward the lumiphoric material.
Abstract:
A lamp having an enclosure with a reflector and a lens where the reflector is made of thermally conductive material. A base is coupled to the enclosure. An LED is located in the enclosure and emits light when energized through an electrical path from the base. A heat sink having a heat dissipating portion that may be at least partially exposed to the ambient environment and heat conducting portion that is thermally coupled to the LED. The reflector is thermally coupled to the heat sink and is exposed to the exterior of the lamp such that heat from the heat sink may be dissipated to the ambient environment at least partially through the reflector.
Abstract:
A lighting device configured to be held relative to a space extending from an opening in a first surface. A distance between first and second emitters and/or a dimension of a lens is/are larger than a largest dimension of the opening and/or a largest dimension of a power supply. Also, a bracket comprising a body member and at least two mounting clips, the body member configured to be attached to a lighting device, each mounting clip pivotable about respective pivot axes at least from a first position, where a first end region of the clip does not extend farther from an axis of the body member than all portions of the body member, to a second position, where the first end region of the clip extends farther from the axis of the body member than all portions of the body member. Also, a lighting device comprising a removable bracket.
Abstract:
A lamp has an optically transmissive enclosure and a base. At least one LED is located in the enclosure and are operable to emit light when energized through an electrical path from the base. A heat sink comprises a heat dissipating portion having a first part that is located inside of the enclosure and that is thermally coupled to the LED and a second part that is exposed to the ambient environment. The second part comprises a plurality of stems connected to the first part where each stem supports a first overhang that extends over a portion of the enclosure and a second overhang that extends over a portion of the base.
Abstract:
The present disclosure discloses LED lamps and enclosures comprising light transparent polymer coatings comprising light diffusing particles as well as methods for providing improved luminous intensity distribution. More particularly, the present disclosure relates to enclosures comprising light-transparent polymer coatings comprising a light diffusing particles on at least one surfaces of the enclosure of an LED lamp.
Abstract:
This disclosure relates to light engines for use in lighting fixtures, such as troffer-style lighting fixtures. Light engines according to the present disclosure have integrated features that eliminate the need for additional components such as a Printed Circuit Board (PCB), a heat sink, a cover portion, a lens and/or a reflective element. Devices according to this disclosure can comprise a rigid body, conductive elements arranged into electrical pathways and light sources such as light emitting diodes (LEDs). Devices according to this disclosure can further comprise integrated cover, lens and/or reflective element features. Methods for the manufacture of such devices are also disclosed.