摘要:
A microfluidic detection system for micrometer-sized entities, such as biological cells, includes a detector component incorporating a plate with a plurality of opening, the plate separating two chambers, one in communication with a fluid source containing target cells bound to magnetic beads. The openings are sized to always permit passage of the magnetic beads therethrough into a lower one of the chambers and are further sized to always prevent passage of the target cells from the upper one of the chambers. The detector component further includes a magnet positioned to pull unbound magnetic beads through the openings and to capture target cells bound to magnetic beads on the surface of the plate. The microfluidic detection system includes a pump flowing the fluid through the detector component at high flow rates of milliliters per minute for high throughput detection of target cells.
摘要:
Within both a split gate field effect transistor (FET) device and a method for fabricating the split gate field effect transistor (FET) device there is formed within a semiconductor substrate a trench within whose sidewall is fully contained a channel region within the split gate field effect transistor (FET) device. Similarly, there is also formed within the split gate field effect transistor a floating gate electrode within the trench and covering within the trench a lower sub-portion of the channel region. Finally, the floating gate electrode in turn has formed vertically and horizontally overlapping thereover within the trench a control gate electrode which covers an upper sub-portion of the channel. The split gate field effect transistor (FET) device is fabricated with enhanced areal density and enhanced performance.
摘要:
Within both a split gate field effect transistor (FET) device and a method for fabricating the split gate field effect transistor (FET) device there is employed a doped polysilicon floating gate electrode having an central annular portion having a higher dopant concentration than a peripheral annular portion of the doped polysilicon floating gate electrode. The higher dopant concentration within the central annular portion of the doped polysilicon floating gate electrode provides enhanced programming speed properties of the split gate field effect transistor (FET) device. The lower dopant concentration within the peripheral annular portion of the doped polysilicon floating gate electrode provides enhanced erasing speed properties within the split gate field effect transistor (FET) device under certain circumstances of fabrication of the split gate field effect transistor (FET) device.
摘要:
A method of fabricating a floating gate/word line device, comprising the following steps. A semiconductor structure is provided. A floating gate portion is formed over the semiconductor structure. The floating gate portion having side walls and a top surface. A poly-oxide portion is formed over the top surface of the floating gate. An interpoly oxide layer is formed over the semiconductor structure, the poly-oxide portion and the poly-oxide portion. The interpoly oxide layer having an initial thickness and includes: a word line region portion over at least a portion of the semiconductor structure adjacent the floating gate portion; side wall area portions over the floating gate portion side walls; and a top portion over the poly-oxide portion. The initial thickness of the top portion of the interpoly oxide layer is reduced to a second thickness without reducing the initial thickness of the interpoly oxide word line region portion or an appreciable portion of the interpoly oxide side wall area portion. A polysilicon layer is formed over the interpoly oxide layer. The structure is patterned to form a floating gate/word line device.