Abstract:
Systems and methods are provided for extracting hemodynamic information, optionally employing portable electronic devices with optional User Interface (UI) features for system implementation. The systems and methods may be employed for acquiring hemodynamic signals and associated electrophysiological data and/or analyzing the former or both in combination to yield useful physiological indicia or results. Such hardware and software is advantageously used for non-invasively monitoring cardiac health.
Abstract:
Hardware and software methodology are described for cardiac health measurement. Hemodynamic waveforms variously acquired for a subject are analyzed to calculate or approximate intrinsic frequencies in two domains in two domains across the Dicrotic Notch. The intrinsic frequencies provide metrics/ measures that correlate to the cardiac health of the subject. The systems may be used for monitoring a condition and/or is diagnosis. Exemplary uses include identifying (diagnosing) the presence of arrhythmia, heat failure, atrial fibrillation, aneurysms, vessel stenosis or aortic valve dysfunction and the necessity for valve replacement and/or monitoring congestive heart failure progression, together with identifying the acute need for hospitalization in connection with daily testing for any such condition.
Abstract:
Hardware and software methodology are described for cardiac health measurement. Hemodynamic waveforms variously acquired for a subject are analyzed to calculate or approximate intrinsic frequencies in two domains in two domains across the Dicrotic Notch. The intrinsic frequencies provide metrics/measures that correlate to the cardiac health of the subject. The systems may be used for monitoring a condition and/or is diagnosis. Exemplary uses include identifying (diagnosing) the presence of arrhythmia, heat failure, atrial fibrillation, aneurysms, vessel stenosis or aortic valve dysfunction and the necessity for valve replacement and/or monitoring congestive heart failure progression, together with identifying the acute need for hospitalization in connection with daily testing for any such condition.
Abstract:
Systems and methods are provided for extracting hemodynamic information, optionally employing portable electronic devices with optional User Interface (UI) features for system implementation. The systems and methods may be employed for acquiring hemodynamic signals and associated electrophysiological data and/or analyzing the former or both in combination to yield useful physiological indicia or results. Such hardware and software is advantageously used for non-invasively monitoring cardiac health.
Abstract:
Systems and methods are provided for extracting hemodynamic information, optionally employing portable electronic devices with optional User Interface (UI) features for system implementation. The systems and methods may be employed for acquiring hemodynamic signals and associated electrophysiological data and/or analyzing the former or both in combination to yield useful physiological indicia or results. Such hardware and software is advantageously used for non-invasively monitoring cardiac health.
Abstract:
Hardware and software methodology are described for non-invasively monitoring cardiac health. Hemodynamic waveforms variously acquired for a subject are analyzed to calculate or approximate intrinsic frequencies in two domains in two domains across the Dicrotic Notch. Together with associated notch timing, heart rate and blood pressure values left ventricle ejection fraction and/or stroke volume can be determination.
Abstract:
Hardware and software methodology are described for non-invasively monitoring cardiac health. Hemodynamic waveforms variously acquired for a subject are analyzed to calculate or approximate intrinsic frequencies in two domains in two domains across the Dicrotic Notch. Together with associated notch timing, heart rate and blood pressure values left ventricle ejection fraction and/or stroke volume can be determination.
Abstract:
Hardware and software methodology are described for cardiac health measurement. Hemodynamic waveforms variously acquired for a subject are analyzed to calculate or approximate intrinsic frequencies in two domains in two domains across the Dicrotic Notch. The intrinsic frequencies provide metrics/measures that correlate to the cardiac health of the subject. The systems may be used for monitoring a condition and/or is diagnosis. Exemplary uses include identifying (diagnosing) the presence of arrhythmia, heat failure, atrial fibrillation, aneurysms, vessel stenosis or aortic valve dysfunction and the necessity for valve replacement and/or monitoring congestive heart failure progression, together with identifying the acute need for hospitalization in connection with daily testing for any such condition.
Abstract:
Hardware and software methodology are described for cardiac health measurement. Hemodynamic waveforms variously acquired for a subject are analyzed to calculate or approximate intrinsic frequencies in two domains in two domains across the Dicrotic Notch. The intrinsic frequencies provide metrics/measures that correlate to the cardiac health of the subject. The systems may be used for monitoring a condition and/or is diagnosis. Exemplary uses include identifying (diagnosing) the presence of arrhythmia, heat failure, atrial fibrillation, aneurysms, vessel stenosis or aortic valve dysfunction and the necessity for valve replacement and/or monitoring congestive heart failure progression, together with identifying the acute need for hospitalization in connection with daily testing for any such condition.