Abstract:
Systems and methods for rate-adaptive pacing are disclosed. In one illustrative embodiment, a medical device for delivering electrical stimulation to a heart may include a housing configured to be implanted on the heart or within a chamber of the heart, one or more electrodes connected to the housing, and a controller disposed within the housing. The controller may be configured to sense a first signal and determine a respiration rate based at least in part on the sensed first signal. In at least some embodiments, the controller may be further configured to adjust a rate of delivery of electrical stimulation by the medical device based at least in part on the determined respiration rate.
Abstract:
A system for use during revascularization includes a catheter having an adjustable balloon for delivery a stent, one or more pacing electrodes for delivering one or more pacing pulses to a patient's heart, and a pacemaker configured to generate the one or more pacing pulses to be delivered to the heart via the one or more pacing electrodes. The one or more pacing pulses are delivered at a rate substantially higher than the patient's intrinsic heart rate without being synchronized to the patient's intrinsic cardiac contractions, and are delivered before, during, or after an ischemic event to prevent or reduce cardiac injury.
Abstract:
In an example, a pacing therapy can be optimized using information indicative of an offset duration between an intrinsic first atrioventricular delay of a subject at rest and a second atrioventricular delay specified to enhance a cardiac output of the subject heart when the subject is at rest. Optimizing the therapy can include receiving information about a heart rate of the subject and receiving information about an intrinsic, heart rate dependent atrioventricular delay. In an example, a therapy parameter, such as a therapy atrioventricular delay, can be adjusted using information about the received heart rate of the subject, the heart-rate-dependent third AV delay, or the offset duration.
Abstract:
System and methods for adhering a patch of stimulation electrode(s) to blood vessels to stimulate a target site on the blood vessel are described. In various embodiments, the system includes an adhesion patch and at least one electrode. The adhesion patch includes a passive adhesion mechanism that may produce an adhesive force sufficiently strong to adhere the adhesion patch to the exterior of the blood vessel and to operationally position the at least one electrode for use in electrically stimulating a target site of the blood vessel. The adhesion patch may also include a release mechanism that is configured for a user to disengage the patch from the exterior of the blood vessel without significant trauma to the blood vessel. After being released, the adhesion patch may be re-adhered to a different target site of the blood vessel and stimulate the different target site.
Abstract:
An apparatus comprises a cardiac signal sensing circuit and a first implantable electrode pair. At least one electrode of the first implantable electrode pair is configured for placement at a location in a right branch of a His bundle of the subject. The apparatus can include a therapy circuit and a control circuit. The control circuit can include an AH delay calculation circuit configured to calculate an optimal paced AH delay interval. The pacing stimulation location is distal to a location of RV conduction block in a right branch of the His bundle. The control circuit initiates delivery of an electrical stimulation pulse to the stimulation location in the His bundle according to the calculated paced AH delay interval and in response to an intrinsic depolarization event sensed in an atrium of the subject.
Abstract:
System and methods for adhering a patch of stimulation electrode(s) to blood vessels to stimulate a target site on the blood vessel are described. In one embodiment, the system includes an adhesion patch and at least one electrode. The adhesion patch includes an active adhesion mechanism that may produce an adhesive force sufficiently strong to adhere the adhesion patch to the exterior of the blood vessel and to operationally position the at least one electrode for use in electrically stimulating a target site of the blood vessel. The adhesion patch may also include a release mechanism that is configured for a user to disengage the patch from the exterior of the blood vessel without significant trauma to the blood vessel. After being released, the adhesion patch may be re-adhered to a different target site of the blood vessel and stimulate the different target site.
Abstract:
Methods and systems to modulate timing intervals for pacing therapy are described. For each cardiac cycle, one or both of an atrioventricular (A-V) timing interval and an atrial (A-A) timing interval are modulated to oppose beat-to-beat ventricular (V-V) timing variability. Pacing therapy is delivered using the modulated timing intervals.
Abstract:
Various embodiments intermittently deliver a sympathetic stimulus, including deliver a sequence of stress-inducing pacing pulses adapted to increase sympathetic tone during the stress-inducing pacing. The stress-inducing pacing results in a parasympathetic reflex after the sequence of stress-inducing pacing. The embodiment further delivers neural stimulation to elicit a parasympathetic response or a sympathetic response in a coordinated manner with respect to the sequence of stress-inducing pacing pulses. The neural stimulation is timed to elicit the parasympathetic response after the sequence of stress-inducing pacing pulses and concurrent with at least a portion of the parasympathetic reflex to the sequence of stress-inducing pacing to enhance a parasympathetic effect of the parasympathetic reflex, or to elicit the sympathetic response during the sequence of stress-inducing pulses to provide a larger sympathetic stimulus, resulting in an enhanced parasympathetic reflex in response to the large sympathetic stimulus.
Abstract:
A cardiac rhythm management system provides for cardiac pacing that is delivered to a target portion of conductive tissue in a heart, such as the His bundle. In various embodiments, the system is configured to verify capture of the target portion and provide for selective pacing of the target portion. In various embodiments, the system is configured to detect responses of the target portion and adjacent myocardial tissue to delivery of pacing pulses and use an outcome of the detection to verify selective capture of the target portion (i.e., without directly exciting the adjacent myocardial tissue.
Abstract:
Various system embodiments comprise an implantable lead, an implantable housing, a neural stimulation circuit in the housing, and a controller in the housing and connected to the neural stimulation circuit. The lead has a proximal end and a distal end. The distal end is adapted to deliver neural stimulation pulses to the ventral nerve root and the dorsal nerve root. The proximal end of the lead is adapted to connect to the housing. The neural stimulation circuit is adapted to generate neural stimulation pulses to stimulate the ventral nerve root or the dorsal nerve root using the implantable lead. The controller is adapted to control the neural stimulation circuit to deliver a neural stimulation treatment.