摘要:
A three-dimensional shaped structure is prepared from a multi-photon reactive composition including: (a) at least one reactive species; (b) a multi-photon photoinitiator system; and (c) a plurality of substantially inorganic particles, wherein the particles have an average particle size of less than about 10 microns in diameter.
摘要:
A three-dimensional shaped structure is prepared from a multi-photon reactive composition including: (a) at least one reactive species; (b) a multi-photon photoinitiator system; and (c) a plurality of substantially inorganic particles, wherein the particles have an average particle size of less than about 10 microns in diameter.
摘要:
A multi-photon reactive composition including: (a) at least one reactive species; and (b) multi-photon photoinitiator system; and (c) a plurality of substantially inorganic particles, wherein the particles have an average particle size of less than about 10 microns in diameter.
摘要:
A method for making an inorganic structure including: (a) applying a photoreactive composition to a substrate, wherein the composition includes: a reactive species, a photoinitiator system, and a plurality of substantially inorganic colloidal particles, wherein the particles have an average particle size of less than about 300 nm; (b) photopatterning the composition to define a structure; and (c) subjecting the structure to elevated temperature for a time sufficient to pyrolyze the reactive species and to at least partially fuse the particles.
摘要:
A light source has an active layer (204) disposed between a first doped semiconductor layer (206) and a second doped semiconductor layer (208). The active layer has energy levels associated with light of a first wavelength. Light emitting elements (216) are positioned on the surface of the first doped semiconductor layer (206) for non-radiative excitation by the active layer. The light emitting elements are capable of emitting light at a second wavelength different from the first wavelength. In some embodiments a grid electrode (213) is disposed on the first doped semiconductor layer and defines open regions (214) of a surface of the first doped layer, the first plurality of light emitting elements being positioned in the open regions. In some embodiments a second plurality of light emitting elements is disposed over the first plurality of light emitting elements for non-radiative excitation by at least some of the first plurality of light emitting elements.
摘要:
A light source has an active layer (204) disposed between a first doped semiconductor layer (206) and a second doped semiconductor layer (208). The active layer has energy levels associated with light of a first wavelength. Light emitting elements (216) are positioned on the surface of the first doped semiconductor layer (206) for non-radiative excitation by the active layer. The light emitting elements are capable of emitting light at a second wavelength different from the first wavelength. In some embodiments a grid electrode (213) is disposed on the first doped semiconductor layer and defines open regions (214) of a surface of the first doped layer, the first plurality of light emitting elements being positioned in the open regions. In some embodiments a second plurality of light emitting elements is disposed over the first plurality of light emitting elements for non-radiative excitation by at least some of the first plurality of light emitting elements.
摘要:
A light source comprises an electroluminescent device that generates pump light and a wavelength converter that includes an absorbing element for absorbing at least some of the pump light. A first layer of light emitting elements is positioned proximate the absorbing element for non-radiative transfer of energy from the absorbing element to the light emitting elements. At least some of the light emitting elements are capable of emitting light having a wavelength longer than the wavelength of the pump light. In some embodiments the electroluminescent device is a light emitting diode (LED) that has a doped semiconductor layer positioned between the LED's active layer and the light emitting elements. The first doped semiconductor layer may have a thickness in excess of 20 nm. A second layer of light emitting elements may be positioned for non-radiative energy transfer from the first layer of light emitting elements.
摘要:
Electrically pixelated luminescent devices, methods for forming electrically pixelated luminescent devices, systems including electrically pixelated luminescent devices, and methods for using electrically pixelated luminescent devices are described. More specifically, electrically pixelated luminescent devices that have inner and outer semiconductor layers and a continuous light emitting region, as well as individually addressable electrodes are described.
摘要:
A light source comprises an electroluminescent device that generates pump light and a wavelength converter that includes an absorbing element for absorbing at least some of the pump light. A first layer of light emitting elements is positioned proximate the absorbing element for non-radiative transfer of energy from the absorbing element to the light emitting elements. At least some of the light emitting elements are capable of emitting light having a wavelength longer than the wavelength of the pump light. In some embodiments the electroluminescent device is a light emitting diode (LED) that has a doped semiconductor layer positioned between the LED's active layer and the light emitting elements. The first doped semiconductor layer may have a thickness in excess of 20 nm. A second layer of light emitting elements may be positioned for non-radiative energy transfer from the first layer of light emitting elements.
摘要:
Electrically pixelated luminescent devices, methods for forming electrically pixelated luminescent devices, systems including electrically pixelated luminescent devices, methods for using electrically pixelated luminescent devices.