摘要:
A substrate (102) having a surface (103) with a first stack of distributed Bragg reflectors (106), a first cladding region (107), an active region (108), a second cladding region (109), a second stack of distributed Bragg reflectors (110), and a contact region (111) is provided. A mesa (131) with a surface (133) and a trench (136) is formed. A first dielectric layer (122) is formed overlying substrate (102) and covering a portion of trench (136). A seed layer (126) having a pattern is formed, with the pattern of seed layer (126) having an opening on a portion of mesa (131). A metal is selectively plated on seed layer (126), thereby generating a layer (304) on seed layer (126) for removal of heat of VCSEL (101).
摘要:
A substrate (102) having a surface (103) with a first stack of distributed Bragg reflectors (106), a first cladding region (107), an active region (108), a second cladding region (109), a second stack of distributed Bragg reflectors (110), and a contact region (111) is provided. A mesa (131) with a surface (133) and a trench (136) is formed. A first dielectric layer (122) is formed overlying substrate (102) and covering a portion of trench (136). A second dielectric layer (128) is formed on surface (133) of mesa (131). A seed layer (126) having a pattern is formed, with the pattern of seed layer (126) having an opening on a portion of second dielectric layer (128) of mesa (131). A metal is selectively plated on seed layer (126), thereby generating a layer (204) on seed layer (126) for removal of heat from VCSEL (101).
摘要:
A substrate with a surface, the surface having disposed thereon a first stack of distributed Bragg reflectors, an active area, a second stack of distributed Bragg reflectors, a contact region, and a dielectric layer is provided. A first isolation trench is formed that extends through the dielectric layer, the contact region, and into a portion of the second stack of distributed Bragg reflectors. A dielectric layer is disposed on the substrate. A second isolation trench is formed through the nitride layer, the contact region, the second stack of distributed Bragg reflectors, the active region and a portion of the first stack of distributed Bragg reflectors, wherein the second isolation trench encircles the first isolation trench. A first electrical contact is formed on the second stack of distributed Bragg reflectors and a second electrical contact is formed on the contact region.
摘要:
A vertical cavity surface emitting laser (VCSEL) having a first and a second mirror stack and an active region is formed utilizing epitaxial layer growth techniques. A lateral photodetector is integrally formed in the epitaxial growth layers, thereby providing for a VCSEL with laterally integrated photodetector. An isolation region is formed in the epitaxial growth layers between the VCSEL and the photodetector thereby isolating the VCSEL and the lateral photodetector. The integrated VCSEL and lateral photodetector capable of monitoring reflected laser emission, thus laser power output of the VCSEL and employing feedback to maintain a specific laser power output level, thereby capable of automatic power control (APC).
摘要:
A VCSEL (113) having first and second stacks of DBRs (120, 116) and an active region sandwiched therebetween (118) is formed. A PIN photo-detector is integrated onto the VCSEL by positioning it on the second stack in the light path. The PIN photo detector includes a first doped region (104), a second undoped (intrinsic) region (106), and a third doped region (108). A first conductive layer (134) is provided in contact with the second stack and the first region and a second conductive layer is provided in contact with the third region.
摘要:
A first stack of distributed Bragg mirrors having alternating layers of aluminum gallium arsenide differing in concentrations of an aluminum are disposed on a surface of a substrate with a first plurality of continuous gradient layers positioned between the alternating layers of differing aluminum concentrations to dynamically move the aluminum concentration from one of the alternating layer to another alternating layers. A first cladding region is disposed on the first stack of distributed Bragg mirrors. An active region is disposed on the first cladding region with a second cladding region being dispose on the active region. A second stack of distributed Bragg mirrors having alternating layers of aluminum gallium arsenide differing concentrations of aluminum are disposed on the second cladding region with a second plurality of continuous gradient layers being positioned between the alternating layers of differing aluminum concentrations to dynamically change the aluminum concentration from one of the altering layers to another alternating layers.
摘要:
A top-emitting vertical cavity surface emitting laser with a current blocking layer at the substrate and offset layers in the mirror stack providing an optical waveguide aligned to the injected current distribution.
摘要:
A VCSEL having a first mirror stack positioned on the surface of a substrate, an active region positioned on the first mirror stack and substantially coextensive therewith, and a second mirror stack positioned on the active region, the second mirror stack forming a ridge or mesa having a side surface. A metal contact layer is positioned on the side surface of the ridge or mesa and on portions of an end of the ridge or mesa to define a light emitting area, and a layer of diamond-like material is electrolytically plated on the metal contact layer so as to form a heat conductor to remove heat from the laser.
摘要:
A high efficiency vertical cavity surface emitting laser with first and second mirror stacks and an active area sandwiched therebetween. The second mirror stack is formed into a mesa with exposed end surface and outer sidewalls and a centrally located light emission region. A portion of the mesa adjacent the exposed outer sidewalls has a reduced electrical conductance so as to spread operating current from the outer sidewalls into the centrally located light emission region. The electrical conductance of the portion is reduced by oxidizing or etching the outer sidewalls.
摘要:
A method of manufacturing a closed cavity LED including forming, on a substrate, a short cavity LED with electrically conductive layers on opposite ends. Depositing a transparent conductive layer of material over one electrically conductive layer and affixing glass or a diamond film over the transparent conductive layer to define and protect a light output area. Removing the substrate and covering the top and sides of the cavity with dielectric material and contact metal. The metal being in contact with the transparent conductive layer and the other electrical contact layer. Thus, a reflector covers the cavity in all directions except the light output area to increase external efficiency.